Telegram Group & Telegram Channel
Forwarded from Zanis ISE
📣 سرفصل های دوره دیتاآنالیز:

1. آشنایی و معرفی هوش مصنوعی و بررسی مفاهیم اساسی مانند یادگیری ماشین، یادگیری عمیق، شبکه‌های عصبی و کاربردهای آن در دنیای واقعی

2.راهنمای نصب و راه‌اندازی محیط‌های نرم‌افزاری و سخت‌افزاری مناسب برای اجرای مدل‌های هوش مصنوعی و یادگیری ماشین

3.معرفی اصول جبر خطی، مفاهیمی نظیر ماتریس‌ها، بردارها، اعمال خطی و اهمیت آن‌ها در مدل‌سازی و تحلیل داده‌ها در زمینه هوش مصنوعی و یادگیری ماشین

4.آموزش و آشنایی با ابزارها و پکیج‌های مختلف برای پیش‌پردازش داده‌ها، مانند پاک‌سازی داده‌ها، نرمال‌سازی، تبدیل داده‌ها و تحلیل اکتشافی داده‌ها

5.تحلیل اکتشافی داده(EDA)
فرآیند تجزیه و تحلیل داده‌ها برای شناسایی الگوها و ویژگی‌های مختلف داده‌ها، شامل استفاده از ابزارهای آماری و مصور سازی برای کشف اطلاعات مخفی در داده‌ها

6.آموزش و کار با پکیج‌های مختلف مصورسازی داده‌ها مثل Matplotlib و Seaborn

7.راهنمای نصب و استفاده از Anaconda، یک محیط مدیریتی محبوب برای نصب و مدیریت پکیج‌ها و ابزارهای علم داده و هوش مصنوعی

8. بیان مفهوم Virtual Env در پایتون و چگونگی استفاده از آن‌ها برای مدیریت پکیج‌ها و کتابخانه‌ها در پروژه‌های مختلف به‌صورت ایزوله و مستقل

9.آموزش نحوه استفاده از ابزار pip برای نصب پکیج‌ها و کتابخانه‌های پایتون از مخزن PyPI (Python Package Index).

10.آموزش نحوه استفاده از conda برای نصب و مدیریت پکیج‌ها و محیط‌ها در پایتون، به‌ویژه برای پروژه‌های مربوط به علم داده و یادگیری ماشین

11. نصب کلیه پکیج‌های مورد نیاز در طول دوره

12.معرفی محیط‌های توسعه یکپارچه (IDE) مختلف برای کدنویسی و توسعه پروژه‌های هوش مصنوعی، مانند Jupyter Notebook، PyCharm و VS Code.

13.معرفی پکیج Matplotlib و ابزارهای آن جهت مصورسازی داده ها

14.آموزش نحوه ساخت و سفارشی‌سازی انواع نمودارهای مختلف در Matplotlib:
Line Plot: ترسیم نمودار خط.
Scatter Plot: ترسیم نمودار پراکندگی.
Step Plot: ترسیم نمودار گام‌به‌گام.
Bar Plot: ترسیم نمودار میله‌ای.
Histogram: ترسیم هیستوگرام برای بررسی توزیع داده‌ها.
Box Plot: ترسیم نمودار جعبه‌ای برای تحلیل توزیع و ناهنجاری‌ها.
3D Plot: ترسیم نمودار سه‌بعدی برای داده‌های چندمتغیره.
Plot Attributes: سفارشی‌سازی ویژگی‌های نمودارها مانند عنوان، برچسب‌ها و رنگ‌ها

15.معرفی ماتریس‌ها و نحوه تبدیل داده‌ها به آن

16.بررسی ابعاد مختلف داده‌ها و نحوه استفاده از داده‌های تک‌بعدی، دوبعدی و چندبعدی در تحلیل‌های مختلف

17.مروری بر عملیات جبر خطی شامل جمع و ضرب ماتریس‌ها و بردارها، معکوس‌گیری از ماتریس‌ها و کاربرد آن‌ها

18.معرفی فضای برداری و نمایش نمونه‌های یک ماتریس در آن

19.بررسی روش‌های مختلف تحلیل داده‌ها و ضرورت انتخاب رویکرد مناسب برای رسیدن به درک صحیح و استخراج اطلاعات مفید از داده‌ها

20.آشنایی با علم آمار و تقسیم‌بندی آن

21.بررسی مفاهیم آمار توصیفی مانند میانگین، میانه، واریانس، چولگی و کشیدگی به‌منظور تحلیل و خلاصه‌سازی داده‌ها

22.معرفی گشتاورهای آماری و کاربرد آن‌ها در شبیه‌سازی و تحلیل ویژگی‌های توزیع داده‌ها

23.مقایسه میانگین و میانه به‌عنوان دو معیار مهم مرکزی در تحلیل داده‌ها

24.تعریف واریانس و نحوه استفاده از آن برای اندازه‌گیری پراکندگی داده‌ها

25.توضیح چولگی و نحوه تأثیر آن بر شکل توزیع داده‌ها

26.معرفی مفهوم کشیدگی و تأثیر آن بر توزیع‌های آماری

27.همبستگی داده‌ها

28.معرفی توزیع‌های آماری مختلف مانند نرمال، یونیفرم، برنولی، باینومیال و پوآسون و استفاده از پکیج SciPy برای شبیه‌سازی و تحلیل این توزیع‌ها

29.بررسی آزمون‌های آماری مختلف برای شناسایی توزیع‌های مناسب برای داده‌ها و تأثیر آن‌ها در تحلیل‌های استنباطی

30.بررسی آزمون جنسون-شنون و کاربرد آن برای اندازه‌گیری فاصله بین توزیع‌های مختلف



group-telegram.com/NeuroZanis/245
Create:
Last Update:

📣 سرفصل های دوره دیتاآنالیز:

1. آشنایی و معرفی هوش مصنوعی و بررسی مفاهیم اساسی مانند یادگیری ماشین، یادگیری عمیق، شبکه‌های عصبی و کاربردهای آن در دنیای واقعی

2.راهنمای نصب و راه‌اندازی محیط‌های نرم‌افزاری و سخت‌افزاری مناسب برای اجرای مدل‌های هوش مصنوعی و یادگیری ماشین

3.معرفی اصول جبر خطی، مفاهیمی نظیر ماتریس‌ها، بردارها، اعمال خطی و اهمیت آن‌ها در مدل‌سازی و تحلیل داده‌ها در زمینه هوش مصنوعی و یادگیری ماشین

4.آموزش و آشنایی با ابزارها و پکیج‌های مختلف برای پیش‌پردازش داده‌ها، مانند پاک‌سازی داده‌ها، نرمال‌سازی، تبدیل داده‌ها و تحلیل اکتشافی داده‌ها

5.تحلیل اکتشافی داده(EDA)
فرآیند تجزیه و تحلیل داده‌ها برای شناسایی الگوها و ویژگی‌های مختلف داده‌ها، شامل استفاده از ابزارهای آماری و مصور سازی برای کشف اطلاعات مخفی در داده‌ها

6.آموزش و کار با پکیج‌های مختلف مصورسازی داده‌ها مثل Matplotlib و Seaborn

7.راهنمای نصب و استفاده از Anaconda، یک محیط مدیریتی محبوب برای نصب و مدیریت پکیج‌ها و ابزارهای علم داده و هوش مصنوعی

8. بیان مفهوم Virtual Env در پایتون و چگونگی استفاده از آن‌ها برای مدیریت پکیج‌ها و کتابخانه‌ها در پروژه‌های مختلف به‌صورت ایزوله و مستقل

9.آموزش نحوه استفاده از ابزار pip برای نصب پکیج‌ها و کتابخانه‌های پایتون از مخزن PyPI (Python Package Index).

10.آموزش نحوه استفاده از conda برای نصب و مدیریت پکیج‌ها و محیط‌ها در پایتون، به‌ویژه برای پروژه‌های مربوط به علم داده و یادگیری ماشین

11. نصب کلیه پکیج‌های مورد نیاز در طول دوره

12.معرفی محیط‌های توسعه یکپارچه (IDE) مختلف برای کدنویسی و توسعه پروژه‌های هوش مصنوعی، مانند Jupyter Notebook، PyCharm و VS Code.

13.معرفی پکیج Matplotlib و ابزارهای آن جهت مصورسازی داده ها

14.آموزش نحوه ساخت و سفارشی‌سازی انواع نمودارهای مختلف در Matplotlib:
Line Plot: ترسیم نمودار خط.
Scatter Plot: ترسیم نمودار پراکندگی.
Step Plot: ترسیم نمودار گام‌به‌گام.
Bar Plot: ترسیم نمودار میله‌ای.
Histogram: ترسیم هیستوگرام برای بررسی توزیع داده‌ها.
Box Plot: ترسیم نمودار جعبه‌ای برای تحلیل توزیع و ناهنجاری‌ها.
3D Plot: ترسیم نمودار سه‌بعدی برای داده‌های چندمتغیره.
Plot Attributes: سفارشی‌سازی ویژگی‌های نمودارها مانند عنوان، برچسب‌ها و رنگ‌ها

15.معرفی ماتریس‌ها و نحوه تبدیل داده‌ها به آن

16.بررسی ابعاد مختلف داده‌ها و نحوه استفاده از داده‌های تک‌بعدی، دوبعدی و چندبعدی در تحلیل‌های مختلف

17.مروری بر عملیات جبر خطی شامل جمع و ضرب ماتریس‌ها و بردارها، معکوس‌گیری از ماتریس‌ها و کاربرد آن‌ها

18.معرفی فضای برداری و نمایش نمونه‌های یک ماتریس در آن

19.بررسی روش‌های مختلف تحلیل داده‌ها و ضرورت انتخاب رویکرد مناسب برای رسیدن به درک صحیح و استخراج اطلاعات مفید از داده‌ها

20.آشنایی با علم آمار و تقسیم‌بندی آن

21.بررسی مفاهیم آمار توصیفی مانند میانگین، میانه، واریانس، چولگی و کشیدگی به‌منظور تحلیل و خلاصه‌سازی داده‌ها

22.معرفی گشتاورهای آماری و کاربرد آن‌ها در شبیه‌سازی و تحلیل ویژگی‌های توزیع داده‌ها

23.مقایسه میانگین و میانه به‌عنوان دو معیار مهم مرکزی در تحلیل داده‌ها

24.تعریف واریانس و نحوه استفاده از آن برای اندازه‌گیری پراکندگی داده‌ها

25.توضیح چولگی و نحوه تأثیر آن بر شکل توزیع داده‌ها

26.معرفی مفهوم کشیدگی و تأثیر آن بر توزیع‌های آماری

27.همبستگی داده‌ها

28.معرفی توزیع‌های آماری مختلف مانند نرمال، یونیفرم، برنولی، باینومیال و پوآسون و استفاده از پکیج SciPy برای شبیه‌سازی و تحلیل این توزیع‌ها

29.بررسی آزمون‌های آماری مختلف برای شناسایی توزیع‌های مناسب برای داده‌ها و تأثیر آن‌ها در تحلیل‌های استنباطی

30.بررسی آزمون جنسون-شنون و کاربرد آن برای اندازه‌گیری فاصله بین توزیع‌های مختلف

BY NeuroZanis


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/NeuroZanis/245

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities. Telegram users are able to send files of any type up to 2GB each and access them from any device, with no limit on cloud storage, which has made downloading files more popular on the platform. Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise.
from us


Telegram NeuroZanis
FROM American