Солнечная энергетика в ЕС: новые рекорды, но темпы роста падают
По данным отраслевой ассоциации SolarPower Europe, в последние годы наблюдается значительный прирост объема установленной солнечной энергии в Европейском Союзе. Так, в 2021 и 2022 годах этот показатель увеличился более чем на 40%, а в 2023 году – более чем на 50%. Однако в текущем году темпы роста заметно снизились: несмотря на установку рекордных 65,5 ГВт солнечных батарей (что всего на 4% превышает результаты предыдущего года), эксперты отмечают существенное замедление развития отрасли.
«Рост существенно замедляется», – отметила генеральный директор SolarPower Europe Вальбурга Хемецбергер в интервью агентству Reuters. Она подчеркнула, что для выполнения амбициозных "зеленых" целей ЕС к 2030 году необходимо ежегодно увеличивать объемы введенных мощностей до 70 ГВт.
Согласно базовому прогнозу SolarPower Europe, к 2030 году в Европе планируется достичь уровня установленной солнечной мощности в 816 ГВт. Это позволит не только соответствовать экологическим целям Евросоюза, но и способствовать отказу от использования дешевого российского газа. На данный момент общая мощность возобновляемых источников энергии (ВИЭ) составляет 338 ГВт.
Замедление темпов роста связано с тем, что многие европейские электросети оказались недостаточно подготовлены к подключению источников возобновляемой энергии. Эксклюзивные данные, предоставленные Reuters, показывают, что количество установленных на крышах домов солнечных панелей уменьшилось на 5 ГВт в годовом исчислении, составив 12,8 ГВт в 2024 году. Кроме того, отмечается снижение инвестиций в европейские солнечные проекты – впервые за последнее десятилетие.
По данным отраслевой ассоциации SolarPower Europe, в последние годы наблюдается значительный прирост объема установленной солнечной энергии в Европейском Союзе. Так, в 2021 и 2022 годах этот показатель увеличился более чем на 40%, а в 2023 году – более чем на 50%. Однако в текущем году темпы роста заметно снизились: несмотря на установку рекордных 65,5 ГВт солнечных батарей (что всего на 4% превышает результаты предыдущего года), эксперты отмечают существенное замедление развития отрасли.
«Рост существенно замедляется», – отметила генеральный директор SolarPower Europe Вальбурга Хемецбергер в интервью агентству Reuters. Она подчеркнула, что для выполнения амбициозных "зеленых" целей ЕС к 2030 году необходимо ежегодно увеличивать объемы введенных мощностей до 70 ГВт.
Согласно базовому прогнозу SolarPower Europe, к 2030 году в Европе планируется достичь уровня установленной солнечной мощности в 816 ГВт. Это позволит не только соответствовать экологическим целям Евросоюза, но и способствовать отказу от использования дешевого российского газа. На данный момент общая мощность возобновляемых источников энергии (ВИЭ) составляет 338 ГВт.
Замедление темпов роста связано с тем, что многие европейские электросети оказались недостаточно подготовлены к подключению источников возобновляемой энергии. Эксклюзивные данные, предоставленные Reuters, показывают, что количество установленных на крышах домов солнечных панелей уменьшилось на 5 ГВт в годовом исчислении, составив 12,8 ГВт в 2024 году. Кроме того, отмечается снижение инвестиций в европейские солнечные проекты – впервые за последнее десятилетие.
«Росатом Возобновляемая энергия» и правительство Кыргызстана заключили соглашение о сотрудничестве в сфере ветроэнергетики
Между «Росатом Возобновляемая энергия» (входит в состав госкорпорации «Росатом») и правительством Кыргызской Республики было подписано важное инвестиционное соглашение, направленное на развитие сферы ветроэнергетики.
Данное соглашение предусматривает реализацию масштабного инвестиционного проекта по строительству и эксплуатации ветряной электростанции с установленной мощностью 100 МВт в городе Балыкчи Иссык-Кульской области Кыргызской Республики. Ветропарк будет расположен в населенном пункте Кок-Мойнок, где ранее, в сентябре 2024 года, состоялась торжественная закладка капсулы времени.
Проект включает начало проектно-изыскательских работ и контрактацию необходимого оборудования, которые планируется начать в 2025 году. Помимо строительства самой станции, важным аспектом сотрудничества станет продажа электроэнергии, вырабатываемой новым объектом.
Между «Росатом Возобновляемая энергия» (входит в состав госкорпорации «Росатом») и правительством Кыргызской Республики было подписано важное инвестиционное соглашение, направленное на развитие сферы ветроэнергетики.
Данное соглашение предусматривает реализацию масштабного инвестиционного проекта по строительству и эксплуатации ветряной электростанции с установленной мощностью 100 МВт в городе Балыкчи Иссык-Кульской области Кыргызской Республики. Ветропарк будет расположен в населенном пункте Кок-Мойнок, где ранее, в сентябре 2024 года, состоялась торжественная закладка капсулы времени.
Проект включает начало проектно-изыскательских работ и контрактацию необходимого оборудования, которые планируется начать в 2025 году. Помимо строительства самой станции, важным аспектом сотрудничества станет продажа электроэнергии, вырабатываемой новым объектом.
Спрос на литий-ионные аккумуляторы вырастет на 26% в 2024 году
По прогнозу лондонской аналитической компании Rho Motion, мировой спрос на литий-ионные аккумуляторы в следующем году увеличится на 26% по сравнению с текущим периодом. Об этом пишет RenEn. Основной движущей силой остаются электромобили, но сектор хранения энергии демонстрирует даже более высокие темпы роста. В 2020 году системы накопления энергии потребляли всего 7% аккумуляторов, а к 2024 году эта цифра увеличилась до 15%.
В этом году мировые поставки литий-ионных аккумуляторов впервые превысили отметку в 1 ТВтч (1000 ГВтч), что свидетельствует о стремительном развитии отрасли. Стоит отметить, что в прошлом году рынок остановился буквально в шаге от этой важной отметки.
Рекордными стали продажи электромобилей в ноябре 2024 года – 1,8 миллиона единиц, две трети которых пришлись на Китай. Системы накопления энергии также показали значительный прирост: за месяц было введено 19,4 ГВтч новой мощности, из них свыше 15 ГВтч в Китае. Эти данные подтверждают лидерство КНР как в производстве, так и в использовании литий-ионных батарей.
Ускоренный рост сектора связан с заметным снижением стоимости литий-ионных аккумуляторов. В 2024 году цены упали сильнее, чем когда-либо после 2017 года, что делает проекты в области возобновляемой энергетики и электромобильности ещё более привлекательными для инвесторов.
По прогнозу лондонской аналитической компании Rho Motion, мировой спрос на литий-ионные аккумуляторы в следующем году увеличится на 26% по сравнению с текущим периодом. Об этом пишет RenEn. Основной движущей силой остаются электромобили, но сектор хранения энергии демонстрирует даже более высокие темпы роста. В 2020 году системы накопления энергии потребляли всего 7% аккумуляторов, а к 2024 году эта цифра увеличилась до 15%.
В этом году мировые поставки литий-ионных аккумуляторов впервые превысили отметку в 1 ТВтч (1000 ГВтч), что свидетельствует о стремительном развитии отрасли. Стоит отметить, что в прошлом году рынок остановился буквально в шаге от этой важной отметки.
Рекордными стали продажи электромобилей в ноябре 2024 года – 1,8 миллиона единиц, две трети которых пришлись на Китай. Системы накопления энергии также показали значительный прирост: за месяц было введено 19,4 ГВтч новой мощности, из них свыше 15 ГВтч в Китае. Эти данные подтверждают лидерство КНР как в производстве, так и в использовании литий-ионных батарей.
Ускоренный рост сектора связан с заметным снижением стоимости литий-ионных аккумуляторов. В 2024 году цены упали сильнее, чем когда-либо после 2017 года, что делает проекты в области возобновляемой энергетики и электромобильности ещё более привлекательными для инвесторов.
Media is too big
VIEW IN TELEGRAM
Друзья, с наступающим Новым годом!🎄🎄🎄Достижения поставленных целей и исполнения желаний!
Заметка о новой энергии №9 (продолжение заметки №8)
В рамках программы разработки новых технологий сжигания угля в 1991 году Борис Адамович Рыбаков (в настоящее время - главный технолог АНО "Водородные технологические решения") был направлен на научную стажировку в Финляндию (Хельсинский технологический университет), где принял участие в экспериментах по сжиганию Иллинойских углей (США) в установке кипящего слоя под давлением (PFBC Pressured Fluidized Bed Combustion).
Коротко об основных преимуществах сжигания угля в кипящем слое по сравнению с традиционным способом сжигания углей:
- в кипящем слое золы и топлива можно поддерживать постоянную температуру. Это важно для снижения выбросов в атмосферу оксидов азота, которые образуются при соединении атомов азота и кислорода, попадающих в зону горения топлива с воздухом. Оптимальная температура кипящего слоя - 850-900°С (в обычных топках угольных котлов температура, при которой происходит сжигание существенно выше)
- для снижения выбросов окислов серы (SO2), которые образуются при наличии серы в топливе, в кипящий слой можно (и нужно) добавлять известняк или доломит.
При сжигании сернистых углей в обычных угольных колах для очистки дымовых газов используются дорогостоящие системы сероочистки. В России построен и введён в эксплуатацию только один энергоблок мощностью 300 МВт с котлом, использующим технологию циркулирующего кипящего слоя (ЦКС). Этот энергоблок установлен на Новочеркасской ГРЭС. При проектировании котла использовалась финская технология. К сожалению отечественными котельными заводами эта технология не освоена. Насколько нам известно, в настоящее время этот энергоблок находится в резерве.
Возникает вопрос: «Какую технологию планируется применить на новом угольном энергоблоке мощностью 1000 МВт в Красноярском крае?». Нам кажется, что это не ЦКС, а традиционная технология сжигания углей.
Интересно, с каким КПД будет работать этот энергоблок?
В рамках программы разработки новых технологий сжигания угля в 1991 году Борис Адамович Рыбаков (в настоящее время - главный технолог АНО "Водородные технологические решения") был направлен на научную стажировку в Финляндию (Хельсинский технологический университет), где принял участие в экспериментах по сжиганию Иллинойских углей (США) в установке кипящего слоя под давлением (PFBC Pressured Fluidized Bed Combustion).
Коротко об основных преимуществах сжигания угля в кипящем слое по сравнению с традиционным способом сжигания углей:
- в кипящем слое золы и топлива можно поддерживать постоянную температуру. Это важно для снижения выбросов в атмосферу оксидов азота, которые образуются при соединении атомов азота и кислорода, попадающих в зону горения топлива с воздухом. Оптимальная температура кипящего слоя - 850-900°С (в обычных топках угольных котлов температура, при которой происходит сжигание существенно выше)
- для снижения выбросов окислов серы (SO2), которые образуются при наличии серы в топливе, в кипящий слой можно (и нужно) добавлять известняк или доломит.
При сжигании сернистых углей в обычных угольных колах для очистки дымовых газов используются дорогостоящие системы сероочистки. В России построен и введён в эксплуатацию только один энергоблок мощностью 300 МВт с котлом, использующим технологию циркулирующего кипящего слоя (ЦКС). Этот энергоблок установлен на Новочеркасской ГРЭС. При проектировании котла использовалась финская технология. К сожалению отечественными котельными заводами эта технология не освоена. Насколько нам известно, в настоящее время этот энергоблок находится в резерве.
Возникает вопрос: «Какую технологию планируется применить на новом угольном энергоблоке мощностью 1000 МВт в Красноярском крае?». Нам кажется, что это не ЦКС, а традиционная технология сжигания углей.
Интересно, с каким КПД будет работать этот энергоблок?