CoRe: лучший способ "клонирования" внешности или концепта при помощи диффузии
Существует 3 больших направления для клонирования внешности: 1. Обучение отдельного текстового эмбеддинга (Textual Inversion) 2. Дообучение UNet (DreamBooth) 3. IP-adapters
В этой работе (не впервые) попробовали скрестить Textual Inversion и DreamBooth, но на этот раз сделали это по-умному. Оказывается, что вот этот выученный "псевдотекстовый" эмбеддинг спецтокена концепта очень странный — у него большая норма, а ещё он перетягивает всё внимание на себя (см. картинку), искажая аутпуты на соседних токенах (в энкодере). Такая особенность выученных эмбеддингов ломает не только качество генерации, но и понимание сложных промптов.
Чтобы решить эту проблему, авторы предлагают хитрую регуляризацию — косинусное "стягивание" эмбеддингов на выходе текстового энкодера между обычным промптом без спецтокена концепта и таким же промптом со спецтокеном. Дополнительно они через MSE лосс минимизируют искажение attention-масок на слоях UNet (между двумя вариантами промптов). А чтобы победить неконтролируемый рост нормы эмбеддинга концепта, они его рескейлят на каждом шаге оптимизации. Само обучение делят на две части — сначала учат эмбеддинги, а потом уже размораживают UNet.
Судя по примерам и метрикам, это намного превосходит всё, что было раньше! Код обещают скоро выложить, но идея настолько простая, что её можно и самому быстренько имплементировать.
CoRe: лучший способ "клонирования" внешности или концепта при помощи диффузии
Существует 3 больших направления для клонирования внешности: 1. Обучение отдельного текстового эмбеддинга (Textual Inversion) 2. Дообучение UNet (DreamBooth) 3. IP-adapters
В этой работе (не впервые) попробовали скрестить Textual Inversion и DreamBooth, но на этот раз сделали это по-умному. Оказывается, что вот этот выученный "псевдотекстовый" эмбеддинг спецтокена концепта очень странный — у него большая норма, а ещё он перетягивает всё внимание на себя (см. картинку), искажая аутпуты на соседних токенах (в энкодере). Такая особенность выученных эмбеддингов ломает не только качество генерации, но и понимание сложных промптов.
Чтобы решить эту проблему, авторы предлагают хитрую регуляризацию — косинусное "стягивание" эмбеддингов на выходе текстового энкодера между обычным промптом без спецтокена концепта и таким же промптом со спецтокеном. Дополнительно они через MSE лосс минимизируют искажение attention-масок на слоях UNet (между двумя вариантами промптов). А чтобы победить неконтролируемый рост нормы эмбеддинга концепта, они его рескейлят на каждом шаге оптимизации. Само обучение делят на две части — сначала учат эмбеддинги, а потом уже размораживают UNet.
Судя по примерам и метрикам, это намного превосходит всё, что было раньше! Код обещают скоро выложить, но идея настолько простая, что её можно и самому быстренько имплементировать.
Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.” The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. In 2018, Russia banned Telegram although it reversed the prohibition two years later.
from us