group-telegram.com/abstractDL/311
Last Update:
COCONUT: Учим LLM думать не словами, а эмбеддингами (by Meta)
С появлением моделей серии o1 от OpenAI интерес к "ризонингу" языковых моделей стал расти ещё быстрее. Давно было известно, что если попросить LLM поразмышлять шаг за шагом "вслух", то точность ответов повышается, это называется Chain-of-Thought (CoT). А вы сами-то пробовали с ходу умножать 10-значные числа? Я только в столбик умею "step-by-step" 😁
Так вот, постепенно появляются идеи, что человеческий язык не оптимален для размышлений (вспоминаем QuietSTAR), он их только ограничивает. Более того! Есть исследования, что и люди на самом-то деле не словами думают — языковой отдел в мозге практически не активен в моменты рассуждений.
Вот и авторы COCONUT предлагают цепочку мыслей генерировать не в виде текстовых токенов, а в виде эмбеддингов, которые рекуррентно скармливаются обратно в LLM. Это должно развязывать моделям руки и позволять думать в более абстрактных сущностях, а не конкретными токенами.
Обнаружилось, что у COCONUT появляется суперпозиция нескольких альтернативных логических цепочек, своего рода breadth-first-search внутри эмбеддингов. Это позволило моделям решать задачки на планирование и логику быстрее и точнее, чем при обычном текстовом CoT. Не на всех бенчмарках выросли метрики, но сама идея классная, лично я в масштабирование таких подходов верю больше, чем в рассуждения на обычном языке.
Но пока тут есть два серьёзных минуса:
1. Для файнтюнинга LLM в режиме COCONUT всё ещё нужны ground truth словесные цепочки рассуждений, которые потом дистиллируются в латенты постепенной заменой текстовых шагов на латентные.
2. Обучение жрёт много компьюта и памяти, т.к. по сути это рекуррентная модель, через которую нужно N раз пропустить градиенты насквозь.
P.S. Более подробный разбор можно почитать у Андрея Лукьяненко тут.
Статья, GitHub
BY AbstractDL
Share with your friend now:
group-telegram.com/abstractDL/311