Notice: file_put_contents(): Write of 10084 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 4096 of 14180 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
АДовый рисёрч | Telegram Webview: ad_research/297 -
Telegram Group & Telegram Channel
#статистика_для_котиков

Я всегда считала, что мои шутки про статистику выше среднего, но, похоже, это была стандартная ошибка

Привет, коллега!

Когда-то я писала о мерах разброса и говорила, что такая вещь как стандартная ошибка среднего (SEM) не может использоваться как мера разброса. Штош, думаю теперь ты готов узнать почему.

Представь себе распределение зарплат всех-всех учёных в России. Как ты скорее всего догадываешься, оно будет ассиметричным. Теперь представь, что ты решил ездить на разные конференции и опрашивать по 50 учёных на каждой, узнавая какая у них зарплата Каждая конференция - это отдельная выборка с одинаковым количеством значений в ней. И для каждой выборки ты можешь посчитать выборочное среднее.

А теперь смотри какая крутая штука. Если ты возьмёшь все эти выборочные средние и сформируешь из них свою выборку с блекджеком и переменными, то она будет иметь нормальное распределение 🌈 Независимо от того, какое распределение имела генеральная совокупность.

Это следует из центральной предельной теоремы, которая гласит, что сумма большого количества слабо зависимых случайных величин имеет распределение, близкое к нормальному. Очень важно, что для работы этой теоремы мы должны опрашивать прям много учёных на каждой конференции, то есть n в выборках должно быть достаточно большим, иначе нормального распределения не будет. Условная граница стоит на 30 значениях: если их меньше - сорян, центральная предельная теорема не работает 😪

Наше новое распределение будем называть распределением выборочных средних. Так вот, как и у любого нормального распределения у него есть среднее и стандартное отклонение. В идеальной ситуации, где мы опросили по 50 учёных на бесконечном количестве конференций и не обанкротили наш институт, среднее распределения выборочных средних будет равно математическому ожиданию генеральной совокупности. В нашем случае - средней зарплате всех-всех учёных. А стандартное отклонение будет рассчитываться как стандартное отклонение генеральной совокупности, делённое на корень из количества значений в выборках, (в нашем случае из 50). И вот это стандартное отклонение распределения выборочных средних и называется стандартной ошибкой среднего (standard error mean, SEM)

Получается, если ты делаешь биологические повторности, то это тоже самое, что опросить учёных только на одной конференции и SEM как мера разброса для них будет попросту некорректна. И только для выборки из средних по многим независимым экспериментам, в каждом из которых будет более 30 биологических повторностей, можно использовать SEM. Но, если честно, я пока не встречала таких работ 🤷‍♂️

И что же получается, SEM это какая-то гипотетическая характеристика сферических коней в вакууме и она никому не нужна? Конечно же нет, без неё не получится рассчитать доверительные интервалы, о которых я расскажу уже в следующем посте про статистику.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ad_research/297
Create:
Last Update:

#статистика_для_котиков

Я всегда считала, что мои шутки про статистику выше среднего, но, похоже, это была стандартная ошибка

Привет, коллега!

Когда-то я писала о мерах разброса и говорила, что такая вещь как стандартная ошибка среднего (SEM) не может использоваться как мера разброса. Штош, думаю теперь ты готов узнать почему.

Представь себе распределение зарплат всех-всех учёных в России. Как ты скорее всего догадываешься, оно будет ассиметричным. Теперь представь, что ты решил ездить на разные конференции и опрашивать по 50 учёных на каждой, узнавая какая у них зарплата Каждая конференция - это отдельная выборка с одинаковым количеством значений в ней. И для каждой выборки ты можешь посчитать выборочное среднее.

А теперь смотри какая крутая штука. Если ты возьмёшь все эти выборочные средние и сформируешь из них свою выборку с блекджеком и переменными, то она будет иметь нормальное распределение 🌈 Независимо от того, какое распределение имела генеральная совокупность.

Это следует из центральной предельной теоремы, которая гласит, что сумма большого количества слабо зависимых случайных величин имеет распределение, близкое к нормальному. Очень важно, что для работы этой теоремы мы должны опрашивать прям много учёных на каждой конференции, то есть n в выборках должно быть достаточно большим, иначе нормального распределения не будет. Условная граница стоит на 30 значениях: если их меньше - сорян, центральная предельная теорема не работает 😪

Наше новое распределение будем называть распределением выборочных средних. Так вот, как и у любого нормального распределения у него есть среднее и стандартное отклонение. В идеальной ситуации, где мы опросили по 50 учёных на бесконечном количестве конференций и не обанкротили наш институт, среднее распределения выборочных средних будет равно математическому ожиданию генеральной совокупности. В нашем случае - средней зарплате всех-всех учёных. А стандартное отклонение будет рассчитываться как стандартное отклонение генеральной совокупности, делённое на корень из количества значений в выборках, (в нашем случае из 50). И вот это стандартное отклонение распределения выборочных средних и называется стандартной ошибкой среднего (standard error mean, SEM)

Получается, если ты делаешь биологические повторности, то это тоже самое, что опросить учёных только на одной конференции и SEM как мера разброса для них будет попросту некорректна. И только для выборки из средних по многим независимым экспериментам, в каждом из которых будет более 30 биологических повторностей, можно использовать SEM. Но, если честно, я пока не встречала таких работ 🤷‍♂️

И что же получается, SEM это какая-то гипотетическая характеристика сферических коней в вакууме и она никому не нужна? Конечно же нет, без неё не получится рассчитать доверительные интервалы, о которых я расскажу уже в следующем посте про статистику.

BY АДовый рисёрч




Share with your friend now:
group-telegram.com/ad_research/297

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment.
from us


Telegram АДовый рисёрч
FROM American