#лабжурнал
Одна женщина спросила мудреца:
– Почему мужчина, имевший много женщин – хороший мужчина, а женщина, имевшая много мужчин – плохая?
На что мудрец ей ответил:
- Вот если антитело подходит к разным эпитопам - это хорошее антитело?
- Ну, наверное
- А вот если один эпитоп к разным антителам?
- То это плохие антитела
- Дура, такую притчу запорола!
Привет, коллега!
Сегодня расскажу про иммуногистохимическое окрашивание - достаточно рутинный для многих биологов и патоморфологов метод. Те, кто про него никогда не слышали, смогут на простом примере узнать, как выявляют специфические молекулы на основе взаимодействия антиген-антитело. А для тех, кто уже с ним сталкивался, в конце поста я приведу несколько лайфхаков😁
Пост получился большой и, думаю, в данной рубрике это станет нормой. Так что читай и смотри мемы в телеграфе
Одна женщина спросила мудреца:
– Почему мужчина, имевший много женщин – хороший мужчина, а женщина, имевшая много мужчин – плохая?
На что мудрец ей ответил:
- Вот если антитело подходит к разным эпитопам - это хорошее антитело?
- Ну, наверное
- А вот если один эпитоп к разным антителам?
- То это плохие антитела
- Дура, такую притчу запорола!
Привет, коллега!
Сегодня расскажу про иммуногистохимическое окрашивание - достаточно рутинный для многих биологов и патоморфологов метод. Те, кто про него никогда не слышали, смогут на простом примере узнать, как выявляют специфические молекулы на основе взаимодействия антиген-антитело. А для тех, кто уже с ним сталкивался, в конце поста я приведу несколько лайфхаков
Пост получился большой и, думаю, в данной рубрике это станет нормой. Так что читай и смотри мемы в телеграфе
Please open Telegram to view this post
VIEW IN TELEGRAM
Telegraph
Иммуногистохимия
Итак, не секрет, что мы состоим из множества разных молекул, отличающихся друг от друга по строению. Чтобы их идентифицировать и визуализировать в клетках или тканях используют антитела, распознающие какие-то специфические эпитопы в целевых молекулах. Допустим…
А что вы там смеётесь? Давайте вместе посмеёмся! © любой школьный учитель
Привет, коллега!
Вот и пятничка наконец-то подкралась, а значит и традиционному интерактиву быть🤼♀️
Сегодня предлагаю просто расслабиться и повеселиться, так что делись в комментариях любимыми приколами и мемесами на любую тематику🍿
И конечно же подборочку из своих сохранёнок прикрепляю к посту
Привет, коллега!
Вот и пятничка наконец-то подкралась, а значит и традиционному интерактиву быть
Сегодня предлагаю просто расслабиться и повеселиться, так что делись в комментариях любимыми приколами и мемесами на любую тематику
И конечно же подборочку из своих сохранёнок прикрепляю к посту
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Что-то на научном
Шикарная ситуация: авторы стебанулись над рецензентами, которые заставляли их что-то ненужное (но может быть зато свое, родное) цитировать, и прямо написали об этом в тексте статьи.
Редактор все это дело пустил «в работу» и вот, статья, с таким красивым абзацем в конце введения, уже в печати🥳
Одним словом авторы - капитальные красавчики.Другими словами - титановые шары у этих авторов 😁
Причем журнал вполне приличный (IF 8.1). Кризис научных журналов продолжается, в общем. Кстати, в том же MDPI, к рекомендациям типа «милок, ты вот эту пачку статей еще процитируй и все будет норм», относятя более чем строго. Своего вообще ничего нельзя советовать, а насчет чужих работ тоже еще десят раз уточнят, точно ли это нужно.
PS. Ссылка на саму статью авторов c Balls of Steel из Поднебесной тут.
Редактор все это дело пустил «в работу» и вот, статья, с таким красивым абзацем в конце введения, уже в печати
Одним словом авторы - капитальные красавчики.
Причем журнал вполне приличный (IF 8.1). Кризис научных журналов продолжается, в общем. Кстати, в том же MDPI, к рекомендациям типа «милок, ты вот эту пачку статей еще процитируй и все будет норм», относятя более чем строго. Своего вообще ничего нельзя советовать, а насчет чужих работ тоже еще десят раз уточнят, точно ли это нужно.
PS. Ссылка на саму статью авторов c Balls of Steel из Поднебесной тут.
Please open Telegram to view this post
VIEW IN TELEGRAM
#сдохни_или_умри
От ваших ки-пи-ай у меня уже ОКР
Привет, коллега!
На прошлой неделе мы говорили о различных индексах, которые призваны оценивать учёных. И все они не идеальны, как и многие количественные показатели, которыми пытаются измерять труд. Сегодня я бы хотела рассказать о двух подходах к определению эффективности людей и команд. Возможно, эта информация пригодится для того, чтобы говорить с разного рода начальством или хотя бы чтобы понимать, чего они от тебя хотят.
Первый подход оценки работы - это KPI (key performance indicators). Думаю, система знакома многим и у многих вызывает только головную боль😡 Смысл её в том, чтобы задать некоторые показатели, которые можно будет отслеживать раз в какой-то период, и по результатам, например, определять сколько денежек должен получить сотрудник. Типичные KPI прописаны в трудовом контракте: надо N статей в год, N методичек, N руководства студентами и так далее.
И если ты уже сколько-то поработал в науке, то знаешь, что любые KPI прекрасно закрываются имитационными процессами. Надо N статей? Ок, напишем в нерецензируемые журналы. Надо N статей в Q1? Ок, напишем в MDPI парочку обзоров, а то и вовсе прибегнем к фальсификации данных. Ещё можно покупать соавторство или соавторов, в общем, вариантов масса. Методички посадим писать студентов, которыми и нужно руководить, очень удобно!
И самое главное, люди начинают работать не для какой-то высшей цели, а на выполнение этих самых KPI. Статьи пишутся не ради нового научного знания, а ради самих статей. Ещё пример, в мою аспирантскую пору, полицейские в главном здании МГУ под конец месяца обшаривали все кусты в поисках курильщиков в незаконных местах, чтобы выполнить план по административным преступлениям. Они ещё жаловались, что эти цифры постоянно увеличивают. Не знаю, на что им теперь приходится идти ради показателей😰
И если мы хотим думать именно о целеполагании, то система KPI не очень подходит и в середине прошлого века стала развиваться альтернативная система оценки эффективности - OKR (Objectives and Key Results). В этой системе первоначально ставятся некие цели (objectives), причём они должны быть достаточно амбициозны, но не недосягаемы. Считается, что эти цели не могут быть достигнуты полностью, иначе они слишком приземлённые, но и слабое продвижение тоже плохо, значит, цели недостижимы. Оптимум считается выполнение на 70%, что бы это ни значило🤷♂️ Далее эти цели разбиваются на 3-5 ключевых результатов (key results). Например, научная группа хочет войти в топ 10 групп по данной тематике в мире. Для этого она ставит ключевые результаты в плане качества работ и, соответственно, журналов для публикации, количества конференций, представленности в соцсетях и тд.
Звучит как KPI, не так ли? Не совсем, очень важно, что key results никак не должны влиять на зарплату сотрудника. И это именно то, на чём часто сыпятся бюджетные учреждения, пытающиеся внедрить систему OKR, не будучи готовыми отпустить финансовые кнут с пряником. И тогда, если спустить ключевые результаты сверху, сотрудники займутся имитацией. Если дать им самим обозначить для себя результаты - то они обозначат те, что заведомо смогут выполнить или даже перевыполнить. А в OKR перевыполнение заведомо невозможно.
Критика OKR связана как раз с туманностью формулировки цели, которую нужно выполнить на 70% и никак иначе, а также с теорией о том, что без финансового стимула люди не будут хорошо делать свою работу. Тем не менее, многие IT компании достаточно успешно работают с OKR.
На мой взгляд, KPI хороши для операционных процессов, не требующих творческого подхода. Завод должен выпускать подшипники в нужном количестве нужного качества и тут KPI подходят как нельзя лучше. Но если завод хочет перестраиваться, выпускать ещё и шарики, то постановка новой производственной линии и системы разделения труда, как мне кажется, требует уже OKR. А если говорить про науку, то это же вообще очень творческий процесс и опыт показывает, что если отстать от учёных с цифрами и дать им относительную свободу - то они сами прекрасно справятся, чай не дураки🤓
От ваших ки-пи-ай у меня уже ОКР
Привет, коллега!
На прошлой неделе мы говорили о различных индексах, которые призваны оценивать учёных. И все они не идеальны, как и многие количественные показатели, которыми пытаются измерять труд. Сегодня я бы хотела рассказать о двух подходах к определению эффективности людей и команд. Возможно, эта информация пригодится для того, чтобы говорить с разного рода начальством или хотя бы чтобы понимать, чего они от тебя хотят.
Первый подход оценки работы - это KPI (key performance indicators). Думаю, система знакома многим и у многих вызывает только головную боль
И если ты уже сколько-то поработал в науке, то знаешь, что любые KPI прекрасно закрываются имитационными процессами. Надо N статей? Ок, напишем в нерецензируемые журналы. Надо N статей в Q1? Ок, напишем в MDPI парочку обзоров, а то и вовсе прибегнем к фальсификации данных. Ещё можно покупать соавторство или соавторов, в общем, вариантов масса. Методички посадим писать студентов, которыми и нужно руководить, очень удобно!
И самое главное, люди начинают работать не для какой-то высшей цели, а на выполнение этих самых KPI. Статьи пишутся не ради нового научного знания, а ради самих статей. Ещё пример, в мою аспирантскую пору, полицейские в главном здании МГУ под конец месяца обшаривали все кусты в поисках курильщиков в незаконных местах, чтобы выполнить план по административным преступлениям. Они ещё жаловались, что эти цифры постоянно увеличивают. Не знаю, на что им теперь приходится идти ради показателей
И если мы хотим думать именно о целеполагании, то система KPI не очень подходит и в середине прошлого века стала развиваться альтернативная система оценки эффективности - OKR (Objectives and Key Results). В этой системе первоначально ставятся некие цели (objectives), причём они должны быть достаточно амбициозны, но не недосягаемы. Считается, что эти цели не могут быть достигнуты полностью, иначе они слишком приземлённые, но и слабое продвижение тоже плохо, значит, цели недостижимы. Оптимум считается выполнение на 70%, что бы это ни значило
Звучит как KPI, не так ли? Не совсем, очень важно, что key results никак не должны влиять на зарплату сотрудника. И это именно то, на чём часто сыпятся бюджетные учреждения, пытающиеся внедрить систему OKR, не будучи готовыми отпустить финансовые кнут с пряником. И тогда, если спустить ключевые результаты сверху, сотрудники займутся имитацией. Если дать им самим обозначить для себя результаты - то они обозначат те, что заведомо смогут выполнить или даже перевыполнить. А в OKR перевыполнение заведомо невозможно.
Критика OKR связана как раз с туманностью формулировки цели, которую нужно выполнить на 70% и никак иначе, а также с теорией о том, что без финансового стимула люди не будут хорошо делать свою работу. Тем не менее, многие IT компании достаточно успешно работают с OKR.
На мой взгляд, KPI хороши для операционных процессов, не требующих творческого подхода. Завод должен выпускать подшипники в нужном количестве нужного качества и тут KPI подходят как нельзя лучше. Но если завод хочет перестраиваться, выпускать ещё и шарики, то постановка новой производственной линии и системы разделения труда, как мне кажется, требует уже OKR. А если говорить про науку, то это же вообще очень творческий процесс и опыт показывает, что если отстать от учёных с цифрами и дать им относительную свободу - то они сами прекрасно справятся, чай не дураки
Please open Telegram to view this post
VIEW IN TELEGRAM
#статистика_для_котиков
Я всегда считала, что мои шутки про статистику выше среднего, но, похоже, это была стандартная ошибка
Привет, коллега!
Когда-то я писала о мерах разброса и говорила, что такая вещь как стандартная ошибка среднего (SEM) не может использоваться как мера разброса. Штош, думаю теперь ты готов узнать почему.
Представь себе распределение зарплат всех-всех учёных в России. Как ты скорее всего догадываешься, оно будет ассиметричным. Теперь представь, что ты решил ездить на разные конференции и опрашивать по 50 учёных на каждой, узнавая какая у них зарплата❓ Каждая конференция - это отдельная выборка с одинаковым количеством значений в ней. И для каждой выборки ты можешь посчитать выборочное среднее.
А теперь смотри какая крутая штука. Если ты возьмёшь все эти выборочные средние и сформируешь из них свою выборку сблекджеком и переменными, то она будет иметь нормальное распределение 🌈 Независимо от того, какое распределение имела генеральная совокупность.
Это следует из центральной предельной теоремы, которая гласит, что сумма большого количества слабо зависимых случайных величин имеет распределение, близкое к нормальному. Очень важно, что для работы этой теоремы мы должны опрашивать прям много учёных на каждой конференции, то есть n в выборках должно быть достаточно большим, иначе нормального распределения не будет. Условная граница стоит на 30 значениях: если их меньше - сорян, центральная предельная теорема не работает😪
Наше новое распределение будем называть распределением выборочных средних. Так вот, как и у любого нормального распределения у него есть среднее и стандартное отклонение. В идеальной ситуации, где мы опросили по 50 учёных на бесконечном количестве конференцийи не обанкротили наш институт , среднее распределения выборочных средних будет равно математическому ожиданию генеральной совокупности. В нашем случае - средней зарплате всех-всех учёных. А стандартное отклонение будет рассчитываться как стандартное отклонение генеральной совокупности, делённое на корень из количества значений в выборках, (в нашем случае из 50). И вот это стандартное отклонение распределения выборочных средних и называется стандартной ошибкой среднего (standard error mean, SEM)
Получается, если ты делаешь биологические повторности, то это тоже самое, что опросить учёных только на одной конференции и SEM как мера разброса для них будет попросту некорректна. И только для выборки из средних по многим независимым экспериментам, в каждом из которых будет более 30 биологических повторностей, можно использовать SEM. Но, если честно, я пока не встречала таких работ🤷♂️
И что же получается, SEM это какая-то гипотетическая характеристика сферических коней в вакууме и она никому не нужна? Конечно же нет, без неё не получится рассчитать доверительные интервалы, о которых я расскажу уже в следующем посте про статистику.
Я всегда считала, что мои шутки про статистику выше среднего, но, похоже, это была стандартная ошибка
Привет, коллега!
Когда-то я писала о мерах разброса и говорила, что такая вещь как стандартная ошибка среднего (SEM) не может использоваться как мера разброса. Штош, думаю теперь ты готов узнать почему.
Представь себе распределение зарплат всех-всех учёных в России. Как ты скорее всего догадываешься, оно будет ассиметричным. Теперь представь, что ты решил ездить на разные конференции и опрашивать по 50 учёных на каждой, узнавая какая у них зарплата
А теперь смотри какая крутая штука. Если ты возьмёшь все эти выборочные средние и сформируешь из них свою выборку с
Это следует из центральной предельной теоремы, которая гласит, что сумма большого количества слабо зависимых случайных величин имеет распределение, близкое к нормальному. Очень важно, что для работы этой теоремы мы должны опрашивать прям много учёных на каждой конференции, то есть n в выборках должно быть достаточно большим, иначе нормального распределения не будет. Условная граница стоит на 30 значениях: если их меньше - сорян, центральная предельная теорема не работает
Наше новое распределение будем называть распределением выборочных средних. Так вот, как и у любого нормального распределения у него есть среднее и стандартное отклонение. В идеальной ситуации, где мы опросили по 50 учёных на бесконечном количестве конференций
Получается, если ты делаешь биологические повторности, то это тоже самое, что опросить учёных только на одной конференции и SEM как мера разброса для них будет попросту некорректна. И только для выборки из средних по многим независимым экспериментам, в каждом из которых будет более 30 биологических повторностей, можно использовать SEM. Но, если честно, я пока не встречала таких работ
И что же получается, SEM это какая-то гипотетическая характеристика сферических коней в вакууме и она никому не нужна? Конечно же нет, без неё не получится рассчитать доверительные интервалы, о которых я расскажу уже в следующем посте про статистику.
Please open Telegram to view this post
VIEW IN TELEGRAM