Telegram Group Search
⚡️Вуз со STEM-подходом к обучению стал одним из лучших по качеству набора студентов

Эксперты НИУ ВШЭ провели мониторинг более 800 вузов страны. В исследовании сравнивали средний балл ЕГЭ зачисленных на программы бакалавриата и специалитета в 2024 году.

Центральный университет замкнул тройку лидеров в категории платного набора, уступив лишь МФТИ и Университету Иннополис. Средний балл платников вуза составил 84,4.

В категории общего набора университет занял восьмое место с результатом 84,7 баллов, опередив МГУ имени М.В. Ломоносова.

В вузе отметили, что в рамках приема учитывают не только результаты ЕГЭ, но и другие достижения абитуриента. Успешно проявившим себя на конкурсах и олимпиадах Центрального университета выдаются гранты, покрывающие до 100% стоимости обучения, а студентам вуза предоставляет платные стажировки в ведущих компаниях страны.

▪️Читать

@ai_machinelearning_big_data

#news #ai #ml
🌟Вышла новая InternLM v3!

Internal выпустила 3 версию своей маленькой модели и утверждают, что на данный момент это лучшая модель класса 7B.

Интересно, что она “обучена всего на 4 триллионах высококачественных токенов”.

- Производительность уровня SoTA, превосходит на бенчмарках Llama3.1-8B и Qwen2.5-7B
- Способность к глубоким рассуждениям с использованием системных промптов (подробности в карточке модели)
- Обучалась только на токенах высокого качества 4T.

📌 Лицензия: Apache 2.0.

🤗 HF: https://huggingface.co/collections/internlm/internlm3-67875827c377690c01a9131d

@ai_machinelearning_big_data

#InternLM #opensource #llm #ml #reasoningmodel
🧠 ML DIGEST

💬Выпущена Новая TTS модель OuteTTS 0.3, 1 B и 500M

> Zero-shot - клонирование голоса > Многоязычный (en, jp, ko, zh, fr, de)
> Обучен 20 000 часам аудиозаписей
> Работает от OLMo-1B и Qwen 2.5 0.5B
> > Функции контроль скорости речь и эмоций
HF


🤗 Hugging Face выпустили открытый курс по изучению AI-агентов на практике.

За прохождение курса можно получить сертификат и самое главное, что при обучении упор идет на практику.
Вы погрузитесь в популярные фреймворки агентов, такие как LangChain, LlamaIndex и smolagents. Эти инструменты предоставляют строительные блоки для создания сложных поведений агентов.
Записаться можно здесь


🎥 Компания Luma AI только что выпустила #Ray2 - новую модель видео с искусственным интеллектом, которая создает реалистичные видеоролики с естественным и последовательным движением. Поддерживает text-to-video и image-to video. Доступна платно.
Подробнее


🎓 Transformer2: Self-adaptive LLMs

SakanaAi представили новую структуру самоадаптации моделей, при которой LLM адаптируется для невидимых задач в реальном времени, выборочно корректируя только отдельные компоненты своих весовых матриц.

Во время вывода используется система диспетчеризации, которая определяет свойства задачи, а затем использует векторы «экспертов» для конкретной задачи, обученные с помощью reinforcement learning👀
Статья
GitHub


🧞Omni-RGPT: очередная SOTA MLLM
NVIDIA представляли Omni-RGPT, MLLM, для понимания изображений и видео на уровне отдельных объектов и регионов на видео.
Статья
Проект


⚡️ Bespoke Curator
Curator - библиотека с открытым исходным кодом, разработанная для упрощения создания синтетических данных!
Github


🌏 Earth View предлагает огромную коллекцию мультиспектральных изображений
Земли из нескольких спутниковых источников, включая Satellogic, Sentinel-1, NEON и предстоящий Sentinel-2.
HF

@ai_machinelearning_big_data


#ml #news #digest #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🎄 Встречаемся на Data Ёлке в московском офисе VK!

18 января сообщество Open Data Science совместно с VK проведёт DS-конференцию по итогам 2024 года. Будут доклады о рексистемах, LLM, NLP и разным направлениям ML. А ещё — обсуждение карьерного стрима в DS и разбор лучших решений от участников VK RecSys Challenge.

За новогодние костюмы и лучшие вопросы из зала — призы! 🥳 Любители нетворкинга смогут неформально пообщаться на афтепати.

🗓 18 января, 12:00 (сбор гостей с 11:00).
🖥 Онлайн в VK Видео — смотрите трансляцию в сообществе VK Team ВКонтакте.
📍 Москва, БЦ Skylight — Ленинградский проспект, 39, строение 79. На входе надо будет показать подтверждение участия и паспорт. Приглашение придёт на email после регистрации.
🖥 Large Language Model Course

Только что был обновлен популярный бесплатный LLM курс.

Это пошаговое руководство с полезными ресурсами и ноутбуками, как для новичков, так и для тех, кто уже обладает мл-базой

Курс разбит на 3 части:
1️⃣LLM Fundamentals: Блок дает фундаментальные знания по математике, Python и нейронным сетям.
2️⃣ LLM Scientist: В этом блоке упор сделан на внутреннем устройстве LLM и их создание с использованием новейших технологий и фреймворков.
3️⃣ The LLM Engineer: Здесь вы научитесь писать приложений на практике и научитесь развертывать их.

⭐️ 41.4k звезд на Github

📌 Курс

@ai_machinelearning_big_data


#llm #course #opensource #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🧬 Крутой проект от Microsoft: MatterGen - новый ИИ, который создает химические материалы на основе промптов.

В отличие от традиционных методов скрининга, он генерирует новые материалы, используя диффузионную модель, изменяя такие свойства, как химический состав, механическая прочность или магнитные характеристики.

Результат экспериментально подтвержден успешным синтезом материалов.

MatterGen представляет собой переход от традиционных методов проб и ошибок и вычислительного скрининга, напрямую генерируя новые материалы в соответствии с конкретными проектными заданиями, что значительно сокращает время создания и потребность в ресурсах.

→ Модель построена на основе специализированной диффузионной архитектуры и учитывает 3D-геометрию и наличие материалов, используя обучающий набор из более чем 608 000 стабильных соединений из известных баз данных материалов.

→ Модель превосходит традиционный скрининг, особенно в неисследованных материалов, что подтверждается ее способностью генерировать стабильные материалы со специфическими свойствами, выходящими за рамки существующих известных материалов.

→ Экспериментальная проверка подтвердила успешный синтез материала TaCr2O6, в точности совпадающий с предсказаниями модели, продемонстрировав практическую пригодность MatterGen в создании реальных материалов.

→ Выпущенная под лицензией MIT, модель MatterGen вместе с обучающими наборами данных предоставляет исследователям развивать и расширять этот инновационный подход.

📌 Читать

@ai_machinelearning_big_data



#microsoft #tech #MatterGen
Please open Telegram to view this post
VIEW IN TELEGRAM
🥥 Training Large Language Models to Reason in a Continuous Latent Space

Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).

Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.

Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем

При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.

В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами <bot> и <eot>.

Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.

На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.

Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.

Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.

Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов

git clone [email protected]:facebookresearch/coconut.git
cd coconut


Github
Paper

@ai_machinelearning_big_data


#deeplearning #nlp #reasoning #llm #ml
2025/02/01 17:37:23
Back to Top
HTML Embed Code: