Telegram Group & Telegram Channel
🔥Adversarial Diffusion Distillation или SDXL-Turbo

Мои кореша из Stability AI зарелизили новый метод дистилляции для SDXL.

Показывают, что из дистиллированной SD-XL (ADD-XL) теперь можно семплить за 4 шага без существенной потери в качестве.

Судя по метрикам - это новая сота. Может работать и за один шаг семплера, но тогда генерирует меньше деталей и картинка выходит чуть более замыленная.

Как это работает?
Это гибрид GAN-а и диффузии.
Тренировка основана на классическом методе дистилляции, но с дискриминатором! Когда число шагов снижается до одного, дискриминатор сильно добрасывает, ведь он не позволяет генерить полную кашу (это было уже показано в нескольких статьях в этом году).

1. Студент и учитель инициализируется весами SD-XL. Далее между предиктами студента и учителя накладывается L2 лосс. Любопытно, что учитель делает только 1 шаг, но начинает с зашумленного предикта студента, а не из случайного шума.

2. В качестве дискриминатора берутся фичи из ViT-S, натренированного в self-supervised режиме с помощью DINOv2. Затем эти фичи подают в тренируемую голову, которая выдает "Real" или "Fake". Тут важно именно брать сильный претренированный энкодер фичей, типа DINOv2.

Картиночки выглядят хорошо, но ниже 4х шагов - уже не то пальто.

Тренировочный код не выложили, и, кажется, его ждать не стоит.

Статья
Код и веса
Демо на ClipDrop (1 шаг)

@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2324
Create:
Last Update:

🔥Adversarial Diffusion Distillation или SDXL-Turbo

Мои кореша из Stability AI зарелизили новый метод дистилляции для SDXL.

Показывают, что из дистиллированной SD-XL (ADD-XL) теперь можно семплить за 4 шага без существенной потери в качестве.

Судя по метрикам - это новая сота. Может работать и за один шаг семплера, но тогда генерирует меньше деталей и картинка выходит чуть более замыленная.

Как это работает?
Это гибрид GAN-а и диффузии.
Тренировка основана на классическом методе дистилляции, но с дискриминатором! Когда число шагов снижается до одного, дискриминатор сильно добрасывает, ведь он не позволяет генерить полную кашу (это было уже показано в нескольких статьях в этом году).

1. Студент и учитель инициализируется весами SD-XL. Далее между предиктами студента и учителя накладывается L2 лосс. Любопытно, что учитель делает только 1 шаг, но начинает с зашумленного предикта студента, а не из случайного шума.

2. В качестве дискриминатора берутся фичи из ViT-S, натренированного в self-supervised режиме с помощью DINOv2. Затем эти фичи подают в тренируемую голову, которая выдает "Real" или "Fake". Тут важно именно брать сильный претренированный энкодер фичей, типа DINOv2.

Картиночки выглядят хорошо, но ниже 4х шагов - уже не то пальто.

Тренировочный код не выложили, и, кажется, его ждать не стоит.

Статья
Код и веса
Демо на ClipDrop (1 шаг)

@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/2324

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation." Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. The War on Fakes channel has repeatedly attempted to push conspiracies that footage from Ukraine is somehow being falsified. One post on the channel from February 24 claimed without evidence that a widely viewed photo of a Ukrainian woman injured in an airstrike in the city of Chuhuiv was doctored and that the woman was seen in a different photo days later without injuries. The post, which has over 600,000 views, also baselessly claimed that the woman's blood was actually makeup or grape juice.
from us


Telegram эйай ньюз
FROM American