Notice: file_put_contents(): Write of 2982 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 11174 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
эйай ньюз | Telegram Webview: ai_newz/2324 -
Telegram Group & Telegram Channel
🔥Adversarial Diffusion Distillation или SDXL-Turbo

Мои кореша из Stability AI зарелизили новый метод дистилляции для SDXL.

Показывают, что из дистиллированной SD-XL (ADD-XL) теперь можно семплить за 4 шага без существенной потери в качестве.

Судя по метрикам - это новая сота. Может работать и за один шаг семплера, но тогда генерирует меньше деталей и картинка выходит чуть более замыленная.

Как это работает?
Это гибрид GAN-а и диффузии.
Тренировка основана на классическом методе дистилляции, но с дискриминатором! Когда число шагов снижается до одного, дискриминатор сильно добрасывает, ведь он не позволяет генерить полную кашу (это было уже показано в нескольких статьях в этом году).

1. Студент и учитель инициализируется весами SD-XL. Далее между предиктами студента и учителя накладывается L2 лосс. Любопытно, что учитель делает только 1 шаг, но начинает с зашумленного предикта студента, а не из случайного шума.

2. В качестве дискриминатора берутся фичи из ViT-S, натренированного в self-supervised режиме с помощью DINOv2. Затем эти фичи подают в тренируемую голову, которая выдает "Real" или "Fake". Тут важно именно брать сильный претренированный энкодер фичей, типа DINOv2.

Картиночки выглядят хорошо, но ниже 4х шагов - уже не то пальто.

Тренировочный код не выложили, и, кажется, его ждать не стоит.

Статья
Код и веса
Демо на ClipDrop (1 шаг)

@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2324
Create:
Last Update:

🔥Adversarial Diffusion Distillation или SDXL-Turbo

Мои кореша из Stability AI зарелизили новый метод дистилляции для SDXL.

Показывают, что из дистиллированной SD-XL (ADD-XL) теперь можно семплить за 4 шага без существенной потери в качестве.

Судя по метрикам - это новая сота. Может работать и за один шаг семплера, но тогда генерирует меньше деталей и картинка выходит чуть более замыленная.

Как это работает?
Это гибрид GAN-а и диффузии.
Тренировка основана на классическом методе дистилляции, но с дискриминатором! Когда число шагов снижается до одного, дискриминатор сильно добрасывает, ведь он не позволяет генерить полную кашу (это было уже показано в нескольких статьях в этом году).

1. Студент и учитель инициализируется весами SD-XL. Далее между предиктами студента и учителя накладывается L2 лосс. Любопытно, что учитель делает только 1 шаг, но начинает с зашумленного предикта студента, а не из случайного шума.

2. В качестве дискриминатора берутся фичи из ViT-S, натренированного в self-supervised режиме с помощью DINOv2. Затем эти фичи подают в тренируемую голову, которая выдает "Real" или "Fake". Тут важно именно брать сильный претренированный энкодер фичей, типа DINOv2.

Картиночки выглядят хорошо, но ниже 4х шагов - уже не то пальто.

Тренировочный код не выложили, и, кажется, его ждать не стоит.

Статья
Код и веса
Демо на ClipDrop (1 шаг)

@ai_newz

BY эйай ньюз



❌Photos not found?❌Click here to update cache.


Share with your friend now:
group-telegram.com/ai_newz/2324

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Perpetrators of these scams will create a public group on Telegram to promote these investment packages that are usually accompanied by fake testimonies and sometimes advertised as being Shariah-compliant. Interested investors will be asked to directly message the representatives to begin investing in the various investment packages offered. Some privacy experts say Telegram is not secure enough The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries.
from us


Telegram эйай ньюз
FROM American