Telegram Group & Telegram Channel
О карьерных траекториях в AI – часть 1

Мне часто пишут в личку, мол «не так много понимаю в AI, но очень интересно и хочется поглубже разобраться». Спрашивают куда пойти учиться и с чего начать.

Давайте я покажу пару примеров возможных карьерных траекторий.

Дано: студент технарь по физике/математике/программированию. Есть техническая база, но не шарю в ML и AI, и в моем универе этого не преподают.

Что делать?
🔄Первый вариант (самый прямолинейный). Ищете магистратуру, где есть ML и AI в программе. Лучше в Европе или в других развитых странах, где есть научные институты и лабы, публикующие работы в сфере AI. Так вы сможете получить наиболее актуальные знание от практикующих профессоров.

Цена вопроса: Например, в Германии и Франции в государственных университетах обучение стоит символических денег даже для иностранных студентов. В Heidelberg University, где я закончил PhD, учеба в маге для иностранца стоит 3000€/год, не включая расходы на жизнь. Причем всегда есть возможность еще и стипендию выбить. А если если бабки не вопрос, то возможностей еще больше.

Посла маги можно гордо крутить нейронки в продакшене или даже, если повезет, найти позицию Research Engineer (но их очень мало) и помогать сайнтистам с рисерчем. Если же вы целитесь именно в ресерч и хотите писать статьи и двигать нас к AGI, то вам после маги нужно будет еще и PhD (читай следующий пункт).

🔄Второй вариант. Поступаете сразу на профильное PhD - имхо, только заграницу. Тут, конечно, нужен бэкграунд посильнее, но зато не нужно думать о деньгах. Как правило PhD студент либо получает зарплату либо стипендию, которой достаточно чтобы покрывать расходы на жизнь и за обучение. Исключением будет только UK и USA, там с финансированием все плохо, Но даже там можно выживать за счет летних стажировок и подработок.

Поступать можно пробовать и без публикаций, чисто на энтузиазме и с крепких техническим бэкграундом. Но в топовые лабы, конечно, хорошо бы иметь проекты в AI.

После 3-5 лет PhD вы выйдете с публикациями и обширными связями в области. Можно будет с ноги врываться в индустриальные AI лабы на позиции вроде Research Scientist. Тут конечно нужно внести много поправок на качество ваших публикаций и отношения с научником, но я тут все же описываю благоприятный исход.

🔄Третий вариант (самостоятельный). Поднимать базу AI/ML самому по курсам и пет-проектам.

Тут нужно много самодисциплины, смотреть онлайн лекции из топовых универов, читать книги (моя подборка), неистово врываться на Kaggle, и пилить опенсорс на гитхабе. Research Scientist-ом по такому варианту не стать, но стать крепким практиком и попасть в FAANG и другие топовые AI фирмы и стартапы вполне реально. В одной из следующих частей этой рубрики я сделаю подборку материалов для самостоятельного изучения.

Конечно, есть ещё куча вариантов развития, я попытаюсь их раскрыть в следующих постах.

Пишите в комментах, что бы вы ещё хотели узнать.

#карьера
@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2971
Create:
Last Update:

О карьерных траекториях в AI – часть 1

Мне часто пишут в личку, мол «не так много понимаю в AI, но очень интересно и хочется поглубже разобраться». Спрашивают куда пойти учиться и с чего начать.

Давайте я покажу пару примеров возможных карьерных траекторий.

Дано: студент технарь по физике/математике/программированию. Есть техническая база, но не шарю в ML и AI, и в моем универе этого не преподают.

Что делать?
🔄Первый вариант (самый прямолинейный). Ищете магистратуру, где есть ML и AI в программе. Лучше в Европе или в других развитых странах, где есть научные институты и лабы, публикующие работы в сфере AI. Так вы сможете получить наиболее актуальные знание от практикующих профессоров.

Цена вопроса: Например, в Германии и Франции в государственных университетах обучение стоит символических денег даже для иностранных студентов. В Heidelberg University, где я закончил PhD, учеба в маге для иностранца стоит 3000€/год, не включая расходы на жизнь. Причем всегда есть возможность еще и стипендию выбить. А если если бабки не вопрос, то возможностей еще больше.

Посла маги можно гордо крутить нейронки в продакшене или даже, если повезет, найти позицию Research Engineer (но их очень мало) и помогать сайнтистам с рисерчем. Если же вы целитесь именно в ресерч и хотите писать статьи и двигать нас к AGI, то вам после маги нужно будет еще и PhD (читай следующий пункт).

🔄Второй вариант. Поступаете сразу на профильное PhD - имхо, только заграницу. Тут, конечно, нужен бэкграунд посильнее, но зато не нужно думать о деньгах. Как правило PhD студент либо получает зарплату либо стипендию, которой достаточно чтобы покрывать расходы на жизнь и за обучение. Исключением будет только UK и USA, там с финансированием все плохо, Но даже там можно выживать за счет летних стажировок и подработок.

Поступать можно пробовать и без публикаций, чисто на энтузиазме и с крепких техническим бэкграундом. Но в топовые лабы, конечно, хорошо бы иметь проекты в AI.

После 3-5 лет PhD вы выйдете с публикациями и обширными связями в области. Можно будет с ноги врываться в индустриальные AI лабы на позиции вроде Research Scientist. Тут конечно нужно внести много поправок на качество ваших публикаций и отношения с научником, но я тут все же описываю благоприятный исход.

🔄Третий вариант (самостоятельный). Поднимать базу AI/ML самому по курсам и пет-проектам.

Тут нужно много самодисциплины, смотреть онлайн лекции из топовых универов, читать книги (моя подборка), неистово врываться на Kaggle, и пилить опенсорс на гитхабе. Research Scientist-ом по такому варианту не стать, но стать крепким практиком и попасть в FAANG и другие топовые AI фирмы и стартапы вполне реально. В одной из следующих частей этой рубрики я сделаю подборку материалов для самостоятельного изучения.

Конечно, есть ещё куча вариантов развития, я попытаюсь их раскрыть в следующих постах.

Пишите в комментах, что бы вы ещё хотели узнать.

#карьера
@ai_newz

BY эйай ньюз


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/ai_newz/2971

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content.
from us


Telegram эйай ньюз
FROM American