Telegram Group & Telegram Channel
Всем привет! Пришло время поделиться первой книгой из актуального стека, которую я недавно закончила!

Пару месяцев назад, я наткнулась в LinkedIn на одну женщину. Её зовут Sol Rashidi, живет она в штатах и первое впечатление было что меня слепило количество fancy регалий на её профиле: „50 most powerful women in tech“, „Top 100 AI thought leaders“, „Forbes AI visionary of the 21st century“, „Global 100 power list“, и так далее. Это конечно заинтриговало, тем более смотря что таких женщин не то чтобы много - и я подписалась.

Кто эта женщина и какой у неё опыт?
Несмотря на то, что Сол училась в университете Беркли на химию, она случайным образом почти 20 лет назад попала в сферу данных и ИИ и участвовала в запуске IBM Watson, который был одной из первых ИИ-аппликаций. Также она потом занимала должности Chief Data Officer у Sony Music и Chief Data & Analytics Officer у Merck Pharmaceuticals. Недолго спустя, как я подписалась на неё в LinkedIn, она опубликовала книгу под пышным названием: «Your AI Survival Guide - Scraped Knees, Bruised Elbows and Lessons Learned from Real-World AI Deployments», и я решила её прочитать.

О чем книга и для кого она?
В книге автор на базе своего опыта даёт компаниям инструкции о том как внедрить ИИ и использовать их данные. При этом тут не важно какой размер у корпорации или в какой индустрии она находится. Вернее, стратегия и юз кейсы конечно сильно зависят от этого, но книга фокусируются на все размеры по очереди и объясняет разницу в подходе. Целевая аудитория тут довольно широкая - от людей которые занимают интерфейс функции как Data Scientist или продакт менеджмент, и людей в таких должностях, как маркетинг которые хотят понять как использовать ИИ, а не сопротивляться прогрессу, до мид-level и C-level executives которые хотят понять как «войти в ИИ». С другой стороны книга не для тех которые работают в биг тек или AI-first компаниях а также не для рисерчеров которым чисто технические детали и наука интересны. Мне кажется что книга именно хорошо подходит для Data/AI продакт менеджеров которые как раз занимаются внедрением ИИ в компаниях. Единственный нюанс: Если у вас есть опыт и знания в ИИ, смело можно в конце одну главу пропустить где базовые концепты и термины объясняются. (Я тоже так сделала и ничего не потеряла.)

Ради чего стоит читать?
Книга, по моему мнению, даёт информацию в трёх топиках:
1️⃣ Как проводить AI readiness assessment и делать use case prioritization. Это очень полезная глава, из которой я многое внедрила в свои процессы ассессмента и приоритизации.
2️⃣ Как строить стратегию и какие есть подводные камни в Change Management в процессе того, как компании становятся data- & AI-driven. Сейчас я в первые участвую в таком гигантском change management процессе. Тут длительный опыт других очень ценен!
3️⃣ Обзор как ИИ будет влиять на разные индустрии и функции в корпорациях. (Для меня именно тут ничего особо нового не было но всё равно это очень хороший и довольно большой обзор, который стоит иметь под рукой а также возможно кому-то будет полезно впервые прочитать.)

О всех этих трёх пунктах я в будущем ещё, независимо от книги, напишу посты в деталях, так как там есть что обсудить. А по поводу Change Management я и вовсе созвонилась с этой женщиной, которая является автором книги. Тут тоже я хочу скоро рассказать про менторинг-платформы, как Intro, возможность сильно ускоренного нетворкинга через них и пользу таких разговоров.

Если вы сейчас читаете и можете рекомендовать книги, где фокус на бизнес и ИИ, пишите в комментариях! Буду рада рекомендациям!) До скорого!)

#книги
@ainastia
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ainastia/11
Create:
Last Update:

Всем привет! Пришло время поделиться первой книгой из актуального стека, которую я недавно закончила!

Пару месяцев назад, я наткнулась в LinkedIn на одну женщину. Её зовут Sol Rashidi, живет она в штатах и первое впечатление было что меня слепило количество fancy регалий на её профиле: „50 most powerful women in tech“, „Top 100 AI thought leaders“, „Forbes AI visionary of the 21st century“, „Global 100 power list“, и так далее. Это конечно заинтриговало, тем более смотря что таких женщин не то чтобы много - и я подписалась.

Кто эта женщина и какой у неё опыт?
Несмотря на то, что Сол училась в университете Беркли на химию, она случайным образом почти 20 лет назад попала в сферу данных и ИИ и участвовала в запуске IBM Watson, который был одной из первых ИИ-аппликаций. Также она потом занимала должности Chief Data Officer у Sony Music и Chief Data & Analytics Officer у Merck Pharmaceuticals. Недолго спустя, как я подписалась на неё в LinkedIn, она опубликовала книгу под пышным названием: «Your AI Survival Guide - Scraped Knees, Bruised Elbows and Lessons Learned from Real-World AI Deployments», и я решила её прочитать.

О чем книга и для кого она?
В книге автор на базе своего опыта даёт компаниям инструкции о том как внедрить ИИ и использовать их данные. При этом тут не важно какой размер у корпорации или в какой индустрии она находится. Вернее, стратегия и юз кейсы конечно сильно зависят от этого, но книга фокусируются на все размеры по очереди и объясняет разницу в подходе. Целевая аудитория тут довольно широкая - от людей которые занимают интерфейс функции как Data Scientist или продакт менеджмент, и людей в таких должностях, как маркетинг которые хотят понять как использовать ИИ, а не сопротивляться прогрессу, до мид-level и C-level executives которые хотят понять как «войти в ИИ». С другой стороны книга не для тех которые работают в биг тек или AI-first компаниях а также не для рисерчеров которым чисто технические детали и наука интересны. Мне кажется что книга именно хорошо подходит для Data/AI продакт менеджеров которые как раз занимаются внедрением ИИ в компаниях. Единственный нюанс: Если у вас есть опыт и знания в ИИ, смело можно в конце одну главу пропустить где базовые концепты и термины объясняются. (Я тоже так сделала и ничего не потеряла.)

Ради чего стоит читать?
Книга, по моему мнению, даёт информацию в трёх топиках:
1️⃣ Как проводить AI readiness assessment и делать use case prioritization. Это очень полезная глава, из которой я многое внедрила в свои процессы ассессмента и приоритизации.
2️⃣ Как строить стратегию и какие есть подводные камни в Change Management в процессе того, как компании становятся data- & AI-driven. Сейчас я в первые участвую в таком гигантском change management процессе. Тут длительный опыт других очень ценен!
3️⃣ Обзор как ИИ будет влиять на разные индустрии и функции в корпорациях. (Для меня именно тут ничего особо нового не было но всё равно это очень хороший и довольно большой обзор, который стоит иметь под рукой а также возможно кому-то будет полезно впервые прочитать.)

О всех этих трёх пунктах я в будущем ещё, независимо от книги, напишу посты в деталях, так как там есть что обсудить. А по поводу Change Management я и вовсе созвонилась с этой женщиной, которая является автором книги. Тут тоже я хочу скоро рассказать про менторинг-платформы, как Intro, возможность сильно ускоренного нетворкинга через них и пользу таких разговоров.

Если вы сейчас читаете и можете рекомендовать книги, где фокус на бизнес и ИИ, пишите в комментариях! Буду рада рекомендациям!) До скорого!)

#книги
@ainastia

BY Anastasia.ai – Tech Entrepreneur in🇨🇭





Share with your friend now:
group-telegram.com/ainastia/11

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Despite Telegram's origins, its approach to users' security has privacy advocates worried. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels.
from us


Telegram Anastasia.ai – Tech Entrepreneur in🇨🇭
FROM American