Telegram Group & Telegram Channel
Перекроить круг в квадрат пытались ещё древние греки, и только спустя сотни лет выяснилось, что циркулем и линейкой сделать это невозможно (если коротко, то причина в трансцендентности числа пи). "Тогда ладно" - сказал Тарский и поставил такой вопрос: можно ли порезать круг на конечное число кусочков и собрать из них квадрат? Не спешите давать отрицательный ответ на этот вопрос, потому что:
- теорема Бойяи-Гервина утверждает, что если взять любые многоугольники равной площади, то один из них можно порезать на конечное число кусочков и собрать другой;
- можно разрезать круг на 2 (всего 2!) кусочка, один из них гомотетично растянуть и собрать квадрат (очень красивая задача, на мой взгляд. впрочем, этот же трюк работает с любыми 2 подмножествами плоскости, имеющими непустую внутренность);
- парадокс Банаха-Тарского: можно разрезать шар на 5 кусочков и собрать два таких же шара. Хотя аналогичная конструкция на плоскости невозможна (квадрат должен быть той же площади, что и круг), это наводит на мысль, ну мало ли что бывает.

Если разрешить резать только по прямым и дугам окружностей, то перекроить круг в квадрат не выйдет (это почти очевидно). Разрешаем большее: можно резать по любым "хорошим" (хороший значит жордановый) кривым. Тоже не получится, доказать уже сильно сложнее. Если приплести аксиому выбора, то порезать удастся на примерно 10^40 кусков. Неконструктивно, но порезали! Вот обзорная статья 2003 года про это всё.

Удивительно, но в 2022 году оказалось, что можно порезать круг, чтобы собрать потом квадрат, вполне себе конструктивно на БОРЕЛЕВСКИЕ КУСКИ!!! (А если кусок борелевский, значит, он измеримый.) Вот это построение. Оч сложно, но какова красота 🥰



group-telegram.com/ansi_logic/103
Create:
Last Update:

Перекроить круг в квадрат пытались ещё древние греки, и только спустя сотни лет выяснилось, что циркулем и линейкой сделать это невозможно (если коротко, то причина в трансцендентности числа пи). "Тогда ладно" - сказал Тарский и поставил такой вопрос: можно ли порезать круг на конечное число кусочков и собрать из них квадрат? Не спешите давать отрицательный ответ на этот вопрос, потому что:
- теорема Бойяи-Гервина утверждает, что если взять любые многоугольники равной площади, то один из них можно порезать на конечное число кусочков и собрать другой;
- можно разрезать круг на 2 (всего 2!) кусочка, один из них гомотетично растянуть и собрать квадрат (очень красивая задача, на мой взгляд. впрочем, этот же трюк работает с любыми 2 подмножествами плоскости, имеющими непустую внутренность);
- парадокс Банаха-Тарского: можно разрезать шар на 5 кусочков и собрать два таких же шара. Хотя аналогичная конструкция на плоскости невозможна (квадрат должен быть той же площади, что и круг), это наводит на мысль, ну мало ли что бывает.

Если разрешить резать только по прямым и дугам окружностей, то перекроить круг в квадрат не выйдет (это почти очевидно). Разрешаем большее: можно резать по любым "хорошим" (хороший значит жордановый) кривым. Тоже не получится, доказать уже сильно сложнее. Если приплести аксиому выбора, то порезать удастся на примерно 10^40 кусков. Неконструктивно, но порезали! Вот обзорная статья 2003 года про это всё.

Удивительно, но в 2022 году оказалось, что можно порезать круг, чтобы собрать потом квадрат, вполне себе конструктивно на БОРЕЛЕВСКИЕ КУСКИ!!! (А если кусок борелевский, значит, он измеримый.) Вот это построение. Оч сложно, но какова красота 🥰

BY Анси логика


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/ansi_logic/103

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. "There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said. Investors took profits on Friday while they could ahead of the weekend, explained Tom Essaye, founder of Sevens Report Research. Saturday and Sunday could easily bring unfortunate news on the war front—and traders would rather be able to sell any recent winnings at Friday’s earlier prices than wait for a potentially lower price at Monday’s open. READ MORE Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis."
from us


Telegram Анси логика
FROM American