Telegram Group & Telegram Channel
Chinchilla: оптимальная языковая модель (by DeepMind)

Оказывается(!) бывает полезно не только масштабировать языковые модели, но и увеличивать количество обучающих данных (или хотя бы количество эпох).

Исследователи из DeepMind даже выявили примерный закон, как именно должны быть связаны размеры модели и число токенов в обучающем датасете при фиксированном количестве доступных гпу-часов для получения лучшей по перформансу модели (см. картинку). Если коротко, model_size x2 -> dataset_size x2.

Судя по всему, существующие большие модели — слишком большие (для имеющихся обучающих данных). Чтобы исправить эту несправедливость, авторы представили оптимальную модель — Chinchilla, которая в 4 раза меньше чем Gopher, но обучалась в 5 раз дольше (тот же датасет, больше эпох). Получившаяся модель, несмотря на свой размер, обходит Gopher почти на всех бенчмарках.

Статья



group-telegram.com/abstractDL/139
Create:
Last Update:

Chinchilla: оптимальная языковая модель (by DeepMind)

Оказывается(!) бывает полезно не только масштабировать языковые модели, но и увеличивать количество обучающих данных (или хотя бы количество эпох).

Исследователи из DeepMind даже выявили примерный закон, как именно должны быть связаны размеры модели и число токенов в обучающем датасете при фиксированном количестве доступных гпу-часов для получения лучшей по перформансу модели (см. картинку). Если коротко, model_size x2 -> dataset_size x2.

Судя по всему, существующие большие модели — слишком большие (для имеющихся обучающих данных). Чтобы исправить эту несправедливость, авторы представили оптимальную модель — Chinchilla, которая в 4 раза меньше чем Gopher, но обучалась в 5 раз дольше (тот же датасет, больше эпох). Получившаяся модель, несмотря на свой размер, обходит Gopher почти на всех бенчмарках.

Статья

BY AbstractDL




Share with your friend now:
group-telegram.com/abstractDL/139

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities. WhatsApp, a rival messaging platform, introduced some measures to counter disinformation when Covid-19 was first sweeping the world. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred." However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors.
from ar


Telegram AbstractDL
FROM American