Notice: file_put_contents(): Write of 10973 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50
Нейроинтерфейсы | Telegram Webview: bci_ru/4233 -
Telegram Group & Telegram Channel
Нейралинк тоже решил заняться генерацией искусственных мозговых данных

Neuralink сообщает об использовании им "мозгового симулятора" (brain simulator) для улучшения качества декодирования мозговых данных. Мол, интерфейсы мозг-компьютер подобны автономным автомобилям, поэтому "высококачественная симуляция моторной коры может ускорить проверку декодеров и дать возможность использовать методы оптимизации вроде обучения с подкреплением".

Некоторым ИИ-блогерам это показалось большим прогрессом, в духе успехов робототехники, "где sim2real позволил наконец-то научить роботов нормально ходить". Но об улучшении декодирования в сравнении с бейзлайном не сообщалось, так что очень похоже, что его (пока?) нет, и в реальном времени удается лишь приблизиться к точности декодера, обученного на реальных данных. (Видео есть в твите, причем там упоминается обезьяна Pager, хотя и не говорится, точно ли этот тот самый Пейджер, которого они когда-то показывали на известном видео, где он явно занимался читтерством). Собственно, они сами говорят, что находятся "in the early stages of generative brain modeling".

Обучение декодеров/классификаторов на синтетических данных -- тема, очень давно обсуждаемая в ИМК-сообществе, поскольку реальных данных всегда катастрофически не хватает. В нашей научной группе тоже кое-что в этом направлении делается (генерация ЭЭГ диффузионными моделями). Но пока что по-настоящему работающих решений никем предложено не было.

Стоит обратить внимание, что "симуляция моторной коры" тут пока что не более чем метафора -- на самом деле просто генерируется многоканальный сигнал, похожий на реальные сигналы, записываемые с неё. Но, конечно, при решении таких задач в принципе не исключено использование некоторых знаний об устройстве и функционировании коры.



group-telegram.com/bci_ru/4233
Create:
Last Update:

Нейралинк тоже решил заняться генерацией искусственных мозговых данных

Neuralink сообщает об использовании им "мозгового симулятора" (brain simulator) для улучшения качества декодирования мозговых данных. Мол, интерфейсы мозг-компьютер подобны автономным автомобилям, поэтому "высококачественная симуляция моторной коры может ускорить проверку декодеров и дать возможность использовать методы оптимизации вроде обучения с подкреплением".

Некоторым ИИ-блогерам это показалось большим прогрессом, в духе успехов робототехники, "где sim2real позволил наконец-то научить роботов нормально ходить". Но об улучшении декодирования в сравнении с бейзлайном не сообщалось, так что очень похоже, что его (пока?) нет, и в реальном времени удается лишь приблизиться к точности декодера, обученного на реальных данных. (Видео есть в твите, причем там упоминается обезьяна Pager, хотя и не говорится, точно ли этот тот самый Пейджер, которого они когда-то показывали на известном видео, где он явно занимался читтерством). Собственно, они сами говорят, что находятся "in the early stages of generative brain modeling".

Обучение декодеров/классификаторов на синтетических данных -- тема, очень давно обсуждаемая в ИМК-сообществе, поскольку реальных данных всегда катастрофически не хватает. В нашей научной группе тоже кое-что в этом направлении делается (генерация ЭЭГ диффузионными моделями). Но пока что по-настоящему работающих решений никем предложено не было.

Стоит обратить внимание, что "симуляция моторной коры" тут пока что не более чем метафора -- на самом деле просто генерируется многоканальный сигнал, похожий на реальные сигналы, записываемые с неё. Но, конечно, при решении таких задач в принципе не исключено использование некоторых знаний об устройстве и функционировании коры.

BY Нейроинтерфейсы




Share with your friend now:
group-telegram.com/bci_ru/4233

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. To that end, when files are actively downloading, a new icon now appears in the Search bar that users can tap to view and manage downloads, pause and resume all downloads or just individual items, and select one to increase its priority or view it in a chat. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital.
from ar


Telegram Нейроинтерфейсы
FROM American