Telegram Group & Telegram Channel
Квантовые компьютеры Часть 1

В последнее время в СМИ мы видим всё больше текстов о квантовых компьютерах, часто в связи с криптовалютами. Дескать, невероятная производительность квантовых вычислений грозит взломами блокчейн-алгоритмов. Такие тексты часто написаны рерайтерами, не разбирающимися в сути предмета. Поэтому появился данный пост 🙂.

Для начала хотелось бы обозначить два главных постулата:

1️⃣Квантовый компьютер быстрее обычного только в определённой категории задач. Все истории о том, что квантовый компьютер решил что-то в миллионы раз быстрее обычного, игнорируют тот факт, что сама задача была «адаптирована» под квантовые вычисления. Проще говоря, очень требовательная к ресурсам обычная игра не будет работать быстрее на квантовом компьютере. Традиционный ПК справится с этой задачей лучше.

2️⃣Квантовые компьютеры не разрушат криптоиндустрию. Страшилки в духе «квантовый компьютер взломает биткоин» — это именно страшилки от незнания. Просто традиционная криптография будет заменена на квантово-устойчивую (которая уже давно существует).

◽️На этом можно закончить и перейти ко второй статье о квантовых компьютерах и крипте. Кто хочет подробнее погрузиться в тему, может продолжать 🙂.

➡️ Квантовые вычисления представляют собой довольно простые с точки зрения математики операции в гильбертовом пространстве. Грубо говоря, это работа с матрицами. Любой, кто изучал высшую математику, знает, что матрицы — далеко не самая сложная часть курса. Придумать квантовые алгоритмы сложно, но использовать их довольно просто. Квантовые вычисления в том или ином виде существуют с 1980-х годов. А что действительно невероятно сложно — так это физически создать квантовый компьютер.

Что такое квантовый компьютер?

Принципиальное отличие квантового компьютера от обычного состоит в подходе к единице информации. В классическом компьютере это бит, в квантовом — кубит. Кубит — это квантовая система, способная находиться в суперпозиции двух базовых состояний. Вспомните известного «кота Шрёдингера» , который и жив, и мертв одновременно. Грубо говоря, квантовый компьютер использует ресурс этих состояний, которые существуют параллельно друг другу (и это не абстракция — они действительно существуют до измерения).

✔️Как образно говорят сторонники многомировой интерпретации квантовой физики, вычисления происходят во всех мирах сразу. Таким образом, до измерения ваш кубит существует и в значении 1, и в значении 0.

➡️ Кубит можно представить в виде сферы Блоха (точнее, точек на её поверхности), которая показана на картинке. Вычисления — это операции вращения кубита. Когда кубитов много — это совокупность таких сфер, связанных между собой. Самое сложное в реализации квантовых компьютеров — создать много связанных кубитов в суперпозиции так, чтобы они не подверглись декогеренции (разрушению квантовой запутанности под воздействием внешней среды). Причём нужно уметь проводить операции над этой системой и извлекать результат. Именно поэтому мы до сих пор не видим квантовых компьютеров с числом кубитов, хотя бы отдалённо сопоставимым с числом битов (совокупности транзисторов) в обычных ПК.

➡️ Результат вычислений квантового компьютера выводится в виде 1 или 0 (как в обычном компьютере). Кстати, в квантовых вычислениях есть оператор, называемый оракулом, — да, это отсылка к прорицателям античности 🙂.

◾️В настоящий момент передовые компании, такие как IBM и Google, соревнуются за количество кубитов и снижение уровня ошибок (error rate) в своих квантовых компьютерах. Часто система с меньшим числом кубитов, но более низким уровнем ошибок может работать эффективнее. Кстати, ещё в 2007 году канадская (на тот момент) компания D-Wave Systems представила первый «почти настоящий» квантовый компьютер, и все тогда тоже говорили: «Мир теперь не будет прежним!».

Часть 2 в следующем посте.

Автор текста изучал Quantum Computing у Дэвида Дойча (разработал первый квантового алгоритм), а также у Артура Экерта (один из пионеров квантовой криптографии) и Роджера Пенроуза. Поэтому некомпетентные сообщения в СМИ вызывают у него интеллектуальную боль 😡
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/cryptokogan/5383
Create:
Last Update:

Квантовые компьютеры Часть 1

В последнее время в СМИ мы видим всё больше текстов о квантовых компьютерах, часто в связи с криптовалютами. Дескать, невероятная производительность квантовых вычислений грозит взломами блокчейн-алгоритмов. Такие тексты часто написаны рерайтерами, не разбирающимися в сути предмета. Поэтому появился данный пост 🙂.

Для начала хотелось бы обозначить два главных постулата:

1️⃣Квантовый компьютер быстрее обычного только в определённой категории задач. Все истории о том, что квантовый компьютер решил что-то в миллионы раз быстрее обычного, игнорируют тот факт, что сама задача была «адаптирована» под квантовые вычисления. Проще говоря, очень требовательная к ресурсам обычная игра не будет работать быстрее на квантовом компьютере. Традиционный ПК справится с этой задачей лучше.

2️⃣Квантовые компьютеры не разрушат криптоиндустрию. Страшилки в духе «квантовый компьютер взломает биткоин» — это именно страшилки от незнания. Просто традиционная криптография будет заменена на квантово-устойчивую (которая уже давно существует).

◽️На этом можно закончить и перейти ко второй статье о квантовых компьютерах и крипте. Кто хочет подробнее погрузиться в тему, может продолжать 🙂.

➡️ Квантовые вычисления представляют собой довольно простые с точки зрения математики операции в гильбертовом пространстве. Грубо говоря, это работа с матрицами. Любой, кто изучал высшую математику, знает, что матрицы — далеко не самая сложная часть курса. Придумать квантовые алгоритмы сложно, но использовать их довольно просто. Квантовые вычисления в том или ином виде существуют с 1980-х годов. А что действительно невероятно сложно — так это физически создать квантовый компьютер.

Что такое квантовый компьютер?

Принципиальное отличие квантового компьютера от обычного состоит в подходе к единице информации. В классическом компьютере это бит, в квантовом — кубит. Кубит — это квантовая система, способная находиться в суперпозиции двух базовых состояний. Вспомните известного «кота Шрёдингера» , который и жив, и мертв одновременно. Грубо говоря, квантовый компьютер использует ресурс этих состояний, которые существуют параллельно друг другу (и это не абстракция — они действительно существуют до измерения).

✔️Как образно говорят сторонники многомировой интерпретации квантовой физики, вычисления происходят во всех мирах сразу. Таким образом, до измерения ваш кубит существует и в значении 1, и в значении 0.

➡️ Кубит можно представить в виде сферы Блоха (точнее, точек на её поверхности), которая показана на картинке. Вычисления — это операции вращения кубита. Когда кубитов много — это совокупность таких сфер, связанных между собой. Самое сложное в реализации квантовых компьютеров — создать много связанных кубитов в суперпозиции так, чтобы они не подверглись декогеренции (разрушению квантовой запутанности под воздействием внешней среды). Причём нужно уметь проводить операции над этой системой и извлекать результат. Именно поэтому мы до сих пор не видим квантовых компьютеров с числом кубитов, хотя бы отдалённо сопоставимым с числом битов (совокупности транзисторов) в обычных ПК.

➡️ Результат вычислений квантового компьютера выводится в виде 1 или 0 (как в обычном компьютере). Кстати, в квантовых вычислениях есть оператор, называемый оракулом, — да, это отсылка к прорицателям античности 🙂.

◾️В настоящий момент передовые компании, такие как IBM и Google, соревнуются за количество кубитов и снижение уровня ошибок (error rate) в своих квантовых компьютерах. Часто система с меньшим числом кубитов, но более низким уровнем ошибок может работать эффективнее. Кстати, ещё в 2007 году канадская (на тот момент) компания D-Wave Systems представила первый «почти настоящий» квантовый компьютер, и все тогда тоже говорили: «Мир теперь не будет прежним!».

Часть 2 в следующем посте.

Автор текста изучал Quantum Computing у Дэвида Дойча (разработал первый квантового алгоритм), а также у Артура Экерта (один из пионеров квантовой криптографии) и Роджера Пенроуза. Поэтому некомпетентные сообщения в СМИ вызывают у него интеллектуальную боль 😡

BY CryptoKogan




Share with your friend now:
group-telegram.com/cryptokogan/5383

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. "There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields.
from ar


Telegram CryptoKogan
FROM American