Telegram Group & Telegram Channel
Wide LRC codes

Я как-то писал в канале про Erasure Codes, в том числе про LRC, который в какой-то степени стал стандартом. Напомню, что про Erasure Codes можно думать как redundancy technique -- если у вас есть данные, их можно поделить на 2 части, посчитать xor, теперь при выпадении любой из 3 получившихся частей, мы можем восстановить данные полностью. В итоге потратили 1.5x места, но redundancy 2 (при выпадении любого 1 куска данные восстанавливаются). Если копать глубже, то дополнительные k частей получаются умножением на матрицу (n + k) x n над полем F_2 или F_256, а при выпадении любых k, матрицу можно обратить и восстановить данные. Вопрос в нахождении матрицы, но так получается, что k можно брать достаточно маленьким по сравнению с n и фактически можно достигнуть любой практической redundancy k потратив (1+eps) места. LRC идут дальше, они стараются группировать некоторые из n частей вместе, чтобы обращение матрицы было частичным -- скажем, поделим всё на 12 частей, у первых 6 посчитаем XOR, у вторых 6 посчитаем XOR, попробуем найти матрицу 16 x 12, где две строки это такие линейные преобразование и ещё 2, чтобы матрица была полностью обратима. Теперь если выпал один чанк данных, то можно скачать 6 других восстановить по XOR, если два чанка в двух разных группах, то тоже всё сработает, а если выпало 3 или 2 в одной группе, ну что ж поделать, скачаем всё и обратим матрицу. Но такие случаи реже случаются, поэтому инженерия любит такое дело. Такие группы называют локальными группами, а дополнительные чанки у локальных групп -- локальные чанки, а дополнительные чанки для всей операции -- глобальные чанки.

На FAST'23 вышла статья в Google про широкие LRC коды. Это такие коды, которые делят на очень много частей, чтобы получить большую redundancy и потратить поменьше места. Холодный storage может делить данные на сотни частей и делать всего десятки дополнительных чанков получая redundancy в 6-7 c оверхедом на весь сторадж процентов в 10% (например, (96, 4, 5) делит на 96 частей, бьёт на 4 локальные группы с 5 глобальными чанками). Хоть и теория кодов очень хорошо изучена, на практике становится слегка сложно с балансом двух вещей

* Находить обратимые матрицы с свойствами локальных чанков
* Сделать операции локальных чанков достаточно простыми, скажем, обычный XOR ок, но что-то сложнее уже слегка путает инженеров. Простота также полезна для миграций -- можно ли как можно больше посчитанных чанков сохранить

Обычно LRC коды изучают как сделать операции над локальными чанками. Статья от Google показывает, что можно сделать слегка лучше -- смотреть на локальные группы как функцию не только от изначальных данных, но и от глобальных чанков, а можно также смотреть как на функцию от данных, глобальных и локальных. Так становится чуть проще размазать локальные чанки по всем данным. Определение и трюк слегка self-referential в том плане, что локальные чанки определяются через локальные, но статья считает некоторую математику, которая сходится.

Зачем это надо?

В статье можно увидеть только слегка лучше результаты по метриками redundancy, average cost of repair и тд. Цифры не ахти в сравнении и никакой супер революции этот LRC метод не привносит. Он рассказывает историю как продвинуть рисёрч слегка дальше по достаточно практичной теме как LRC коды.

Keep on pushing, статья рассказывает хорошую историю.

https://www.usenix.org/system/files/fast23-kadekodi.pdf
https://www.youtube.com/watch?v=pfnSYWEf5q4



group-telegram.com/experimentalchill/244
Create:
Last Update:

Wide LRC codes

Я как-то писал в канале про Erasure Codes, в том числе про LRC, который в какой-то степени стал стандартом. Напомню, что про Erasure Codes можно думать как redundancy technique -- если у вас есть данные, их можно поделить на 2 части, посчитать xor, теперь при выпадении любой из 3 получившихся частей, мы можем восстановить данные полностью. В итоге потратили 1.5x места, но redundancy 2 (при выпадении любого 1 куска данные восстанавливаются). Если копать глубже, то дополнительные k частей получаются умножением на матрицу (n + k) x n над полем F_2 или F_256, а при выпадении любых k, матрицу можно обратить и восстановить данные. Вопрос в нахождении матрицы, но так получается, что k можно брать достаточно маленьким по сравнению с n и фактически можно достигнуть любой практической redundancy k потратив (1+eps) места. LRC идут дальше, они стараются группировать некоторые из n частей вместе, чтобы обращение матрицы было частичным -- скажем, поделим всё на 12 частей, у первых 6 посчитаем XOR, у вторых 6 посчитаем XOR, попробуем найти матрицу 16 x 12, где две строки это такие линейные преобразование и ещё 2, чтобы матрица была полностью обратима. Теперь если выпал один чанк данных, то можно скачать 6 других восстановить по XOR, если два чанка в двух разных группах, то тоже всё сработает, а если выпало 3 или 2 в одной группе, ну что ж поделать, скачаем всё и обратим матрицу. Но такие случаи реже случаются, поэтому инженерия любит такое дело. Такие группы называют локальными группами, а дополнительные чанки у локальных групп -- локальные чанки, а дополнительные чанки для всей операции -- глобальные чанки.

На FAST'23 вышла статья в Google про широкие LRC коды. Это такие коды, которые делят на очень много частей, чтобы получить большую redundancy и потратить поменьше места. Холодный storage может делить данные на сотни частей и делать всего десятки дополнительных чанков получая redundancy в 6-7 c оверхедом на весь сторадж процентов в 10% (например, (96, 4, 5) делит на 96 частей, бьёт на 4 локальные группы с 5 глобальными чанками). Хоть и теория кодов очень хорошо изучена, на практике становится слегка сложно с балансом двух вещей

* Находить обратимые матрицы с свойствами локальных чанков
* Сделать операции локальных чанков достаточно простыми, скажем, обычный XOR ок, но что-то сложнее уже слегка путает инженеров. Простота также полезна для миграций -- можно ли как можно больше посчитанных чанков сохранить

Обычно LRC коды изучают как сделать операции над локальными чанками. Статья от Google показывает, что можно сделать слегка лучше -- смотреть на локальные группы как функцию не только от изначальных данных, но и от глобальных чанков, а можно также смотреть как на функцию от данных, глобальных и локальных. Так становится чуть проще размазать локальные чанки по всем данным. Определение и трюк слегка self-referential в том плане, что локальные чанки определяются через локальные, но статья считает некоторую математику, которая сходится.

Зачем это надо?

В статье можно увидеть только слегка лучше результаты по метриками redundancy, average cost of repair и тд. Цифры не ахти в сравнении и никакой супер революции этот LRC метод не привносит. Он рассказывает историю как продвинуть рисёрч слегка дальше по достаточно практичной теме как LRC коды.

Keep on pushing, статья рассказывает хорошую историю.

https://www.usenix.org/system/files/fast23-kadekodi.pdf
https://www.youtube.com/watch?v=pfnSYWEf5q4

BY Experimental chill


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/experimentalchill/244

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look. The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981.
from ar


Telegram Experimental chill
FROM American