Telegram Group & Telegram Channel
Так, хватит хиханек-хаханек, пора возобновлять рубрику #книги . Сегодня я хочу рассказать про интересную книжку под названием "ГЕОМЕТРИИ" от А.Б. Сосинского 💅 (рис. 1).

Геометрия в ней понимается в смысле Клейна, т.е. как множество с действием группы на нем. В качестве множества обычно берется множество точек, а в качестве группы - множество допустимых в данной геометрии преобразований. Подобным образом автор задает "геометрии симметрий многогранников", а также знакомые нам обычную геометрию Евклида, Лобачевского, Римана и т.д. (см. оглавление книги - рис. 2). Это не совсем стандартный подход, и читать про него довольно интересно.

В частности, мне понравилась часть про платоновы тела (рис. 3-4), в которой автор доказывает с помощью методов теории групп, почему в трехмерном пространстве их существует всего пять; да и в целом часть про теорию групп в этой книге мне понравилась.

Книга сравнительно доступна: она рассчитана на студентов мехмата или другого похожего факультета 1-2 курсов. Еще из плюсов книги можно отметить то, что она снабжена большим количеством упражнений (рис. 5), многие из которых имеют ответы и указания к решению в конце.

Я сама пока что прочитала около трети книги. Из того, что на данный момент непонятно: не соображу, почему все-таки если задать Евклидову геометрию (и другие на рис. 6-7) множеством точек и действующим на нем преобразованием, то нам больше не обязательно использовать аксиомы Евклида? Чтобы это было правдой, аксиомы Евклида должны выводиться из этого нового определения, но как сделать этот вывод, мне пока не очевидно. 😌

UPD: в комментариях начали разбирать этот вопрос, заходите
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/forodirchNEWS/2826
Create:
Last Update:

Так, хватит хиханек-хаханек, пора возобновлять рубрику #книги . Сегодня я хочу рассказать про интересную книжку под названием "ГЕОМЕТРИИ" от А.Б. Сосинского 💅 (рис. 1).

Геометрия в ней понимается в смысле Клейна, т.е. как множество с действием группы на нем. В качестве множества обычно берется множество точек, а в качестве группы - множество допустимых в данной геометрии преобразований. Подобным образом автор задает "геометрии симметрий многогранников", а также знакомые нам обычную геометрию Евклида, Лобачевского, Римана и т.д. (см. оглавление книги - рис. 2). Это не совсем стандартный подход, и читать про него довольно интересно.

В частности, мне понравилась часть про платоновы тела (рис. 3-4), в которой автор доказывает с помощью методов теории групп, почему в трехмерном пространстве их существует всего пять; да и в целом часть про теорию групп в этой книге мне понравилась.

Книга сравнительно доступна: она рассчитана на студентов мехмата или другого похожего факультета 1-2 курсов. Еще из плюсов книги можно отметить то, что она снабжена большим количеством упражнений (рис. 5), многие из которых имеют ответы и указания к решению в конце.

Я сама пока что прочитала около трети книги. Из того, что на данный момент непонятно: не соображу, почему все-таки если задать Евклидову геометрию (и другие на рис. 6-7) множеством точек и действующим на нем преобразованием, то нам больше не обязательно использовать аксиомы Евклида? Чтобы это было правдой, аксиомы Евклида должны выводиться из этого нового определения, но как сделать этот вывод, мне пока не очевидно. 😌

UPD: в комментариях начали разбирать этот вопрос, заходите

BY Кофейный теоретик










Share with your friend now:
group-telegram.com/forodirchNEWS/2826

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively. Sebi said data, emails and other documents are being retrieved from the seized devices and detailed investigation is in progress.
from ar


Telegram Кофейный теоретик
FROM American