Notice: file_put_contents(): Write of 3313 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 11505 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
gonzo-обзоры ML статей | Telegram Webview: gonzo_ML/21 -
Telegram Group & Telegram Channel
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle, Michael Carbin
CSAIL MIT

Статья: https://arxiv.org/abs/1803.03635

#CNN, #FFNN, #optimization, #pruning, #ICLR 2019

Статья немного про природу вещей. Рассматривают dense feed-forward neural networks, полносвязные и/или CNN. Известно, что методы network pruning позволяют эффективно ужать уже обученную сеть -- выкинуть заметную часть параметров (связей) без потерь качества (в ряде случаев удаётся снизить объём на 90%). Известно, кроме того, что сразу научить такую уменьшенную сеть до того же качества не выходит.

Авторы выдвигают гипотезу "лотерейного билета": любая случайно инициализированная плотная сеть, обучаемая на заданный таргет, содержит некоторую подсеть, которая, будучи обученной на тот же таргет, даст качество не хуже за то же или меньшее число итераций обучения. В целом, это утверждение имеет как минимум тривиальное подтверждение, но авторы утверждают, что это эффективная подсеть обычно существенно меньше основной. Такие эффективные подсети называют "winning tickets".

Интуиция тут такая: Начиная обучать случайно инициализированную сеть, оптимизатор просто ищет уже готовый подходящий канал внутри случайной сети, а дальше уже именно этот путь оптимизируется, а остальная сеть не очень то и нужна. В плотной сети число возможных путей от входа к выходу растёт с числом нейронов существенно надлинейно. Поэтому, чем больше сеть взять в начале, тем больше шансов сразу получить подходящий подграф.

Проводят серию экспериментов для подтверждения этой гипотезы:
1) Возьмём большую случайно инициализированную сеть Х, сохраним её копию С.
2) Обучим Х, применим к ней pruning, получим редуцированную обученную сеть У (размером 10-20% от Х).
3) Вернёмся к сохранённой копии С, редуцируем её до тех же параметров, что остались в У, но веса оставим случайными (из С) -- это будет сеть Z.
4) Обучим Z и сравним сходимость с Х. Качество должно получиться не хуже, а сходимость -- не медленнее.
5) Затем вернёмся к Z и вновь переинициализируем её случайным образом, пусть это будет сеть R. Опять сравним с X и Z. Если гипотеза верна, всё должно ухудшиться.
6) Ещё можно сравниться со случайным подграфом Х того же размера что Z.

В целом, результаты экспериментов скорее подтверждают гипотезу, по крайней мере для простых топологий. Дальше в статье идёт разбор таких экспериментов для некоторого числа разных задач, топологий и методов оптимизации.

Общие выводы:
- текущая схема обучения сетей не очень эффективна, есть куда улучшаться, например, в сторону более эффективной начальной инициализации (но не очень понятно как),
- можно попробовать определять winning tickets на ранних стадиях обучения большой сети и делать ранний pruning к ним -- это может повысить эффективность обучения на практике.



group-telegram.com/gonzo_ML/21
Create:
Last Update:

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle, Michael Carbin
CSAIL MIT

Статья: https://arxiv.org/abs/1803.03635

#CNN, #FFNN, #optimization, #pruning, #ICLR 2019

Статья немного про природу вещей. Рассматривают dense feed-forward neural networks, полносвязные и/или CNN. Известно, что методы network pruning позволяют эффективно ужать уже обученную сеть -- выкинуть заметную часть параметров (связей) без потерь качества (в ряде случаев удаётся снизить объём на 90%). Известно, кроме того, что сразу научить такую уменьшенную сеть до того же качества не выходит.

Авторы выдвигают гипотезу "лотерейного билета": любая случайно инициализированная плотная сеть, обучаемая на заданный таргет, содержит некоторую подсеть, которая, будучи обученной на тот же таргет, даст качество не хуже за то же или меньшее число итераций обучения. В целом, это утверждение имеет как минимум тривиальное подтверждение, но авторы утверждают, что это эффективная подсеть обычно существенно меньше основной. Такие эффективные подсети называют "winning tickets".

Интуиция тут такая: Начиная обучать случайно инициализированную сеть, оптимизатор просто ищет уже готовый подходящий канал внутри случайной сети, а дальше уже именно этот путь оптимизируется, а остальная сеть не очень то и нужна. В плотной сети число возможных путей от входа к выходу растёт с числом нейронов существенно надлинейно. Поэтому, чем больше сеть взять в начале, тем больше шансов сразу получить подходящий подграф.

Проводят серию экспериментов для подтверждения этой гипотезы:
1) Возьмём большую случайно инициализированную сеть Х, сохраним её копию С.
2) Обучим Х, применим к ней pruning, получим редуцированную обученную сеть У (размером 10-20% от Х).
3) Вернёмся к сохранённой копии С, редуцируем её до тех же параметров, что остались в У, но веса оставим случайными (из С) -- это будет сеть Z.
4) Обучим Z и сравним сходимость с Х. Качество должно получиться не хуже, а сходимость -- не медленнее.
5) Затем вернёмся к Z и вновь переинициализируем её случайным образом, пусть это будет сеть R. Опять сравним с X и Z. Если гипотеза верна, всё должно ухудшиться.
6) Ещё можно сравниться со случайным подграфом Х того же размера что Z.

В целом, результаты экспериментов скорее подтверждают гипотезу, по крайней мере для простых топологий. Дальше в статье идёт разбор таких экспериментов для некоторого числа разных задач, топологий и методов оптимизации.

Общие выводы:
- текущая схема обучения сетей не очень эффективна, есть куда улучшаться, например, в сторону более эффективной начальной инициализации (но не очень понятно как),
- можно попробовать определять winning tickets на ранних стадиях обучения большой сети и делать ранний pruning к ним -- это может повысить эффективность обучения на практике.

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/21

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. He adds: "Telegram has become my primary news source." He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels.
from ar


Telegram gonzo-обзоры ML статей
FROM American