Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/gonzo_ML/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
gonzo-обзоры ML статей | Telegram Webview: gonzo_ML/292 -
Telegram Group & Telegram Channel
Longformer: The Long-Document Transformer
Iz Beltagy, Matthew E. Peters, Arman Cohan
Статья: https://arxiv.org/abs/2004.05150
Код: https://github.com/allenai/longformer
Longformer также на подходе (Work in Progress) в общеизвестной библиотечке от Huggingface: https://huggingface.co/transformers/model_doc/longformer.html

Свежие трансформеры. На этот раз от Allen Institute for AI.

Общеизвестная проблема трансформера — квадратичная относительно размера входа сложность механизма внимания. Из-за этого, в частности, нет нормальной возможности работать с длинными документами, которые не влезают целиком в attention span трансформера (обычно не более 512 токенов). Приходится исхитряться, и наиболее частый подход -- резать на окна фиксированного размера (обычно с перекрытием) и бежать по всей последовательности, как-то потом агрегируя активации каждого из окон. Хочется уметь делать это естественнее.

Проблему уже пытались решить по-разному, например, через оптимизацию внимания или через внедрение какой-либо памяти.

Из подходов первого типа, которые наиболее на слуху, можно вспомнить, пожалуй, Sparse Transformer от OpenAI (https://arxiv.org/abs/1904.10509, https://www.group-telegram.com/ar/gonzo_ML.com/65) или Reformer от Гугла (https://arxiv.org/abs/2001.04451, https://www.group-telegram.com/ar/gonzo_ML.com/176). В первом были кастомные разреженные ядра, во втором приближённое вычисление внимания через locality-sensitive hashing. Из интересных был ещё также Adaptive attention span (https://arxiv.org/abs/1905.07799, https://www.group-telegram.com/ar/gonzo_ML.com/99).

Из второго типа можно вспомнить Transformer-XL (https://arxiv.org/abs/1901.02860, https://www.group-telegram.com/ar/gonzo_ML.com/62), а также недавний Compressive Transformer от DeepMind (https://arxiv.org/abs/1911.05507, https://www.group-telegram.com/ar/gonzo_ML.com/165).

В текущей работе делается очередной подход к разреженному вниманию, чтобы можно было работать с длинными документами.

Предлагается следующее: вместо полного n^2 внимания делаем более гибкие варианты, акцентирующиеся на локальном контексте (который в разных попытках изучения Берта показал свою важность), а также добавляем когда надо элементы глобального контекста.

Локальный контекст добавляется через внимание скользящим окном (разрешаем self-attention только внутри окна фиксированного размера), возможно также делая это окно разреженным (dilated). Это всё уже совсем похоже на свёртки, только не с фиксированным ядром, а с вычисляемым по данным. Такая работа в природе была, и хоть её представляли на ICLR 2019, всё равно она, кажется, несколько недооценена (https://arxiv.org/abs/1901.10430, Pay Less Attention with Lightweight and Dynamic Convolutions).

К локальному контексту добавляется глобальный для предопределённых входных позиций. В случае аналогичных берту задач классификации это позиция [CLS], или, например, позиции токенов вопроса для QA задач.

Соответственно в модель вводятся отдельные Q, K, V (если эти термины непонятны, то рекомендую лучшую статью по трансформеру, что я видел http://jalammar.github.io/illustrated-transformer/) для скользящего окна и для глобального внимания.

Полученные механизмы внимания скейлятся линейно относительно входа. Профит!

В этом месте есть инженерная проблема. Наивная реализация таких вариантов внимания слишком медленная, требуются кастомные ядра для CUDA. Это сделано с помощью Tensor Virtual Machine (TVM, https://tvm.apache.org/, https://arxiv.org/abs/1802.04799) с помощью которой можно описать функцию на сравнительно высокоуровневом питоноподобном языке (https://github.com/allenai/longformer/blob/master/longformer/diagonaled_mm_tvm.py#L52), а затем скомпилировать в целевую архитектуру, например, CUDA. Таким образом написали ядро, которое вполне сносно работает (но потенциал ускорения ещё есть).



group-telegram.com/gonzo_ML/292
Create:
Last Update:

Longformer: The Long-Document Transformer
Iz Beltagy, Matthew E. Peters, Arman Cohan
Статья: https://arxiv.org/abs/2004.05150
Код: https://github.com/allenai/longformer
Longformer также на подходе (Work in Progress) в общеизвестной библиотечке от Huggingface: https://huggingface.co/transformers/model_doc/longformer.html

Свежие трансформеры. На этот раз от Allen Institute for AI.

Общеизвестная проблема трансформера — квадратичная относительно размера входа сложность механизма внимания. Из-за этого, в частности, нет нормальной возможности работать с длинными документами, которые не влезают целиком в attention span трансформера (обычно не более 512 токенов). Приходится исхитряться, и наиболее частый подход -- резать на окна фиксированного размера (обычно с перекрытием) и бежать по всей последовательности, как-то потом агрегируя активации каждого из окон. Хочется уметь делать это естественнее.

Проблему уже пытались решить по-разному, например, через оптимизацию внимания или через внедрение какой-либо памяти.

Из подходов первого типа, которые наиболее на слуху, можно вспомнить, пожалуй, Sparse Transformer от OpenAI (https://arxiv.org/abs/1904.10509, https://www.group-telegram.com/ar/gonzo_ML.com/65) или Reformer от Гугла (https://arxiv.org/abs/2001.04451, https://www.group-telegram.com/ar/gonzo_ML.com/176). В первом были кастомные разреженные ядра, во втором приближённое вычисление внимания через locality-sensitive hashing. Из интересных был ещё также Adaptive attention span (https://arxiv.org/abs/1905.07799, https://www.group-telegram.com/ar/gonzo_ML.com/99).

Из второго типа можно вспомнить Transformer-XL (https://arxiv.org/abs/1901.02860, https://www.group-telegram.com/ar/gonzo_ML.com/62), а также недавний Compressive Transformer от DeepMind (https://arxiv.org/abs/1911.05507, https://www.group-telegram.com/ar/gonzo_ML.com/165).

В текущей работе делается очередной подход к разреженному вниманию, чтобы можно было работать с длинными документами.

Предлагается следующее: вместо полного n^2 внимания делаем более гибкие варианты, акцентирующиеся на локальном контексте (который в разных попытках изучения Берта показал свою важность), а также добавляем когда надо элементы глобального контекста.

Локальный контекст добавляется через внимание скользящим окном (разрешаем self-attention только внутри окна фиксированного размера), возможно также делая это окно разреженным (dilated). Это всё уже совсем похоже на свёртки, только не с фиксированным ядром, а с вычисляемым по данным. Такая работа в природе была, и хоть её представляли на ICLR 2019, всё равно она, кажется, несколько недооценена (https://arxiv.org/abs/1901.10430, Pay Less Attention with Lightweight and Dynamic Convolutions).

К локальному контексту добавляется глобальный для предопределённых входных позиций. В случае аналогичных берту задач классификации это позиция [CLS], или, например, позиции токенов вопроса для QA задач.

Соответственно в модель вводятся отдельные Q, K, V (если эти термины непонятны, то рекомендую лучшую статью по трансформеру, что я видел http://jalammar.github.io/illustrated-transformer/) для скользящего окна и для глобального внимания.

Полученные механизмы внимания скейлятся линейно относительно входа. Профит!

В этом месте есть инженерная проблема. Наивная реализация таких вариантов внимания слишком медленная, требуются кастомные ядра для CUDA. Это сделано с помощью Tensor Virtual Machine (TVM, https://tvm.apache.org/, https://arxiv.org/abs/1802.04799) с помощью которой можно описать функцию на сравнительно высокоуровневом питоноподобном языке (https://github.com/allenai/longformer/blob/master/longformer/diagonaled_mm_tvm.py#L52), а затем скомпилировать в целевую архитектуру, например, CUDA. Таким образом написали ядро, которое вполне сносно работает (но потенциал ускорения ещё есть).

BY gonzo-обзоры ML статей




Share with your friend now:
group-telegram.com/gonzo_ML/292

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements.
from ar


Telegram gonzo-обзоры ML статей
FROM American