Telegram Group & Telegram Channel
Сегодня обсудим процедуру обучения DeepSeek-V3. Архитектура и технические решения были разобраны в предыдущем посте (https://www.group-telegram.com/ar/gonzo_ML.com/3292).

На всякий случай ещё раз явно проговорю, это не DeepSeek-R1, которая reasoning по типу o1/o3, это базовая чат-модель, на которой R1 была обучена. Не уверен, что буду делать разбор R1, первого поста про DeepSeek (https://www.group-telegram.com/ar/gonzo_ML.com/3239), имеющегося разбора V3 и поста от Аламмара (https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1), кажется, достаточно. Но посмотрим.

Из технически важных моментов хочется ещё раз обратить внимание на важность обучения в FP8 из предыдущего поста (https://www.group-telegram.com/ar/gonzo_ML.com/3294). Это биг дил, что наконец оно завелось в промышленном режиме для большой модели хорошего качества. Эффективно оно удваивает доступные вычислительные мощности или даёт возможность обучать модели в два раза большего размера.

Обучение разделено на pre-training и post-training.

Pre-training.


Относительно предыдущего DeepSeek-V2 (https://arxiv.org/abs/2405.04434) увеличена доля примеров про математику и программирование, а также расширен набор языков за пределы английского и китайского. При этом всё равно, английский + китайский составляют большую часть датасета, а описания композиции и распределения других языков я не нашёл.

Всего итоговый датасет содержит 14.8T токенов (у предыдущей версии было 8.1T токенов). Токенизатор BPE со словарём в 128k. Относительно предыдущей версии токенизатор изменён и обучен на более мультиязычном корпусе, а также добавлены токены, комбинирующие пунктуацию с переносами строк.

В предобучении в дополнение к стандартному Next-Token-Prediction используется Fill-in-Middle (FIM) стратегия с частотой 0.1, применённая в DeepSeekCoder-V2 (https://arxiv.org/abs/2406.11931), но изобретённая ранее в OpenAI (https://arxiv.org/abs/2207.14255), где модель должна восстановить середину текста. Если точнее, то используется подход Prefix-Suffix-Middle (PSM) для структурирования данных (на уровне документов) следующим образом:

<|fim_begin|>𝑓_pre<|fim_hole|>𝑓_suf<|fim_end|>𝑓_middle<|eos_token|>.

Во время предобучения максимальная длина последовательности 4k токенов.

После предобучения применяют YaRN (https://arxiv.org/abs/2309.00071) для расширения контекста и делают две дополнительные фазы обучения по 1000 шагов, где расширяют контекст с 4k до 32k, а затем до 128k.

В итоге на множестве бенчмарков, включая английский, китайский, код, математику и один мультиязычный, в целом бьют предыдущую версию DeepSeek-V2, а также две dense модели, Qwen2.5 72B Base и LLaMA-3.1 405B Base, получая сильнейшую из открытых моделей. Сравнение с Qwen2.5 72B Base интересно, это была одна из сильных моделей, активных параметров у неё получается практически в два раза больше, чем у DeepSeek. У LLaMA-3.1 405B Base их вообще в 11 раз больше, но она на этих бенчмарках хуже.

Авторы заявляют, что для DeepSeek-V3 на каждый триллион токенов обучения требуется 180K H800 GPU-часов.

Post-training.

Состоит из двух частей, Supervised Fine-Tuning (SFT) и RL.

SFT делался на дополнительных Reasoning и Non-Reasoning данных. Это всё было сделано для разных областей (упоминания конкретных доменов далее) и итоговый датасет для instruction-tuning составляет 1.5M примеров.

Reasoning данные фокусировались на математике, программировании, логических задачах. Данные генерировались внутренней DeepSeek-R1 моделью (которая в свою очередь была обучена на DeepSeek-V3 в качестве базы — см.рекурсия). Но проблема с данными от R1 была в её многословности, overthinking и плохом форматировании.

Для генерации данных из конкретного домена создавалась экспертная модель, также обученная через SFT + RL. Генерировались два типа SFT сэмплов: <problem, original response> и <system prompt, problem, R1 response>. В промпте были инструкции для рефлексии и верификации. В RL фазе с высокой температурой генерились ответы модели, и постепенно модель выучивала паттерны R1. После обучения с помощью rejection sampling генерировались примеры для SFT оригинальной модели.



group-telegram.com/gonzo_ML/3312
Create:
Last Update:

Сегодня обсудим процедуру обучения DeepSeek-V3. Архитектура и технические решения были разобраны в предыдущем посте (https://www.group-telegram.com/ar/gonzo_ML.com/3292).

На всякий случай ещё раз явно проговорю, это не DeepSeek-R1, которая reasoning по типу o1/o3, это базовая чат-модель, на которой R1 была обучена. Не уверен, что буду делать разбор R1, первого поста про DeepSeek (https://www.group-telegram.com/ar/gonzo_ML.com/3239), имеющегося разбора V3 и поста от Аламмара (https://newsletter.languagemodels.co/p/the-illustrated-deepseek-r1), кажется, достаточно. Но посмотрим.

Из технически важных моментов хочется ещё раз обратить внимание на важность обучения в FP8 из предыдущего поста (https://www.group-telegram.com/ar/gonzo_ML.com/3294). Это биг дил, что наконец оно завелось в промышленном режиме для большой модели хорошего качества. Эффективно оно удваивает доступные вычислительные мощности или даёт возможность обучать модели в два раза большего размера.

Обучение разделено на pre-training и post-training.

Pre-training.


Относительно предыдущего DeepSeek-V2 (https://arxiv.org/abs/2405.04434) увеличена доля примеров про математику и программирование, а также расширен набор языков за пределы английского и китайского. При этом всё равно, английский + китайский составляют большую часть датасета, а описания композиции и распределения других языков я не нашёл.

Всего итоговый датасет содержит 14.8T токенов (у предыдущей версии было 8.1T токенов). Токенизатор BPE со словарём в 128k. Относительно предыдущей версии токенизатор изменён и обучен на более мультиязычном корпусе, а также добавлены токены, комбинирующие пунктуацию с переносами строк.

В предобучении в дополнение к стандартному Next-Token-Prediction используется Fill-in-Middle (FIM) стратегия с частотой 0.1, применённая в DeepSeekCoder-V2 (https://arxiv.org/abs/2406.11931), но изобретённая ранее в OpenAI (https://arxiv.org/abs/2207.14255), где модель должна восстановить середину текста. Если точнее, то используется подход Prefix-Suffix-Middle (PSM) для структурирования данных (на уровне документов) следующим образом:

<|fim_begin|>𝑓_pre<|fim_hole|>𝑓_suf<|fim_end|>𝑓_middle<|eos_token|>.

Во время предобучения максимальная длина последовательности 4k токенов.

После предобучения применяют YaRN (https://arxiv.org/abs/2309.00071) для расширения контекста и делают две дополнительные фазы обучения по 1000 шагов, где расширяют контекст с 4k до 32k, а затем до 128k.

В итоге на множестве бенчмарков, включая английский, китайский, код, математику и один мультиязычный, в целом бьют предыдущую версию DeepSeek-V2, а также две dense модели, Qwen2.5 72B Base и LLaMA-3.1 405B Base, получая сильнейшую из открытых моделей. Сравнение с Qwen2.5 72B Base интересно, это была одна из сильных моделей, активных параметров у неё получается практически в два раза больше, чем у DeepSeek. У LLaMA-3.1 405B Base их вообще в 11 раз больше, но она на этих бенчмарках хуже.

Авторы заявляют, что для DeepSeek-V3 на каждый триллион токенов обучения требуется 180K H800 GPU-часов.

Post-training.

Состоит из двух частей, Supervised Fine-Tuning (SFT) и RL.

SFT делался на дополнительных Reasoning и Non-Reasoning данных. Это всё было сделано для разных областей (упоминания конкретных доменов далее) и итоговый датасет для instruction-tuning составляет 1.5M примеров.

Reasoning данные фокусировались на математике, программировании, логических задачах. Данные генерировались внутренней DeepSeek-R1 моделью (которая в свою очередь была обучена на DeepSeek-V3 в качестве базы — см.рекурсия). Но проблема с данными от R1 была в её многословности, overthinking и плохом форматировании.

Для генерации данных из конкретного домена создавалась экспертная модель, также обученная через SFT + RL. Генерировались два типа SFT сэмплов: <problem, original response> и <system prompt, problem, R1 response>. В промпте были инструкции для рефлексии и верификации. В RL фазе с высокой температурой генерились ответы модели, и постепенно модель выучивала паттерны R1. После обучения с помощью rejection sampling генерировались примеры для SFT оригинальной модели.

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/3312

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Andrey, a Russian entrepreneur living in Brazil who, fearing retaliation, asked that NPR not use his last name, said Telegram has become one of the few places Russians can access independent news about the war. After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. Founder Pavel Durov says tech is meant to set you free The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. During the operations, Sebi officials seized various records and documents, including 34 mobile phones, six laptops, four desktops, four tablets, two hard drive disks and one pen drive from the custody of these persons.
from ar


Telegram gonzo-обзоры ML статей
FROM American