Notice: file_put_contents(): Write of 6118 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 14310 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Цифровой геноцид | Telegram Webview: gulagdigital/2920 -
Telegram Group & Telegram Channel
Нобелевская премия, институты и LLM

Не самый большой знаток работ Аджемоглу и, признаюсь, читать его книги "Почему богатые страны"(имейте институты и имейте их сто лет назад, желающие могут почитать Ватоадмина/Василия Тополева) было непросто. Но поговорим лучше о старой Нобелевке, писал о ней год назад.

"Грамматика институтов" — подход, предложенный Сью Кроуфорд и Элионор Остром в 1995 году. Он фокусируется на синтаксических структурных элементах, которые составляют и формируют институции. В 2009 году Элинор Остром получила премию памяти А. Нобеля по экономике за анализ феномена "economic governance" (термина, которому сложно подобрать точное русскоязычное обозначение).

Ссылка: https://www.group-telegram.com/evidence_guide/9

Широкое распространение подхода "грамматики институтов" затрудняют высокие временные и ресурсные затраты. В статье предлагается использовать машинное обучение и анализировать тексты с помощью методов NLP (обработка естественного языка). В качестве примера используется анализ 19 документов, регламентирующих работу пищевой отрасли.

Rice, Douglas, et al. "Machine Coding of Policy Texts with the Institutional Grammar." Public Administration. December 2020.
Ссылка: https://onlinelibrary.wiley.com/doi/10.1111/padm.12711

Этапы анализа:

1. Текст обрабатывается и размечается с помощью методов NLP для учета нестандартного форматирования: специфической пунктуации (тире, "буллеты" и т.п.) и сложной структуры текста. Для этого используется пакет Stanford CoreNLP на языке R.

2. Далее текст размечается по правилам "грамматики институтов" с помощью машинного обучения с учителем. Выделяются следующие 6 синтаксических элементов:

- Атрибут (Attribute, [A]) – актор, к которому относится утверждение.
- Цель (Aim, [I]) – действие утверждения.
- Деонтика (Deontic, [D]) – предписание, что актор должен или не должен делать.
- Объект (Object, [B]) – объект, к которому относится действие.
- Условие (Condition, [C]) – временные, пространственные или регуляторные ограничения.
- Or else (O) – стимул для выполнения или невыполнения действия (например, наказание за нарушение).

Эти элементы объединяются в набор, обозначаемый как ABDICO.

Пример:
Предложение: "Операции, сертифицированные как органические в соответствии с Национальной программой США по органическому производству, должны ежегодно представлять план органической системы, в противном случае сертификация будет отменена."

Разметка:
- Атрибут: "Операции, сертифицированные как органические..."
- Деонтика: "должны"
- Цель: "представлять"
- Объект: "план органической системы"
- Условие: "ежегодно"
- Or else: "в противном случае сертификация будет отменена"

В статье использовался набор из 19 документов, регламентирующих работу пищевой отрасли. Все слова, размеченные вручную как элементы "грамматики институтов", были разделены на обучающее множество (8320 слов) и множество для оценки (922 слова). Разметка текстов в соответствии с правилами "грамматики институтов" производилась с использованием машинного обучения с учителем, в частности нейронных сетей.

"Грамматика институтов", предложенная более двух десятилетий назад, открывает перспективы для ученых, занимающихся государственной политикой и администрированием, заинтересованных в систематическом изучении структуры и понимания политических текстов. Полученный уровень точности автоматической классификации подтверждает полезность такого анализа текстов в рамках подхода "грамматики институтов". Увеличение точности возможно при расширении количества классифицированных текстов, совершенствовании методов обработки естественного языка и машинного обучения.

Теперь ждём применения методов грамматики институтов на дешёвом LLM и ChatGPT.



group-telegram.com/gulagdigital/2920
Create:
Last Update:

Нобелевская премия, институты и LLM

Не самый большой знаток работ Аджемоглу и, признаюсь, читать его книги "Почему богатые страны"(имейте институты и имейте их сто лет назад, желающие могут почитать Ватоадмина/Василия Тополева) было непросто. Но поговорим лучше о старой Нобелевке, писал о ней год назад.

"Грамматика институтов" — подход, предложенный Сью Кроуфорд и Элионор Остром в 1995 году. Он фокусируется на синтаксических структурных элементах, которые составляют и формируют институции. В 2009 году Элинор Остром получила премию памяти А. Нобеля по экономике за анализ феномена "economic governance" (термина, которому сложно подобрать точное русскоязычное обозначение).

Ссылка: https://www.group-telegram.com/evidence_guide/9

Широкое распространение подхода "грамматики институтов" затрудняют высокие временные и ресурсные затраты. В статье предлагается использовать машинное обучение и анализировать тексты с помощью методов NLP (обработка естественного языка). В качестве примера используется анализ 19 документов, регламентирующих работу пищевой отрасли.

Rice, Douglas, et al. "Machine Coding of Policy Texts with the Institutional Grammar." Public Administration. December 2020.
Ссылка: https://onlinelibrary.wiley.com/doi/10.1111/padm.12711

Этапы анализа:

1. Текст обрабатывается и размечается с помощью методов NLP для учета нестандартного форматирования: специфической пунктуации (тире, "буллеты" и т.п.) и сложной структуры текста. Для этого используется пакет Stanford CoreNLP на языке R.

2. Далее текст размечается по правилам "грамматики институтов" с помощью машинного обучения с учителем. Выделяются следующие 6 синтаксических элементов:

- Атрибут (Attribute, [A]) – актор, к которому относится утверждение.
- Цель (Aim, [I]) – действие утверждения.
- Деонтика (Deontic, [D]) – предписание, что актор должен или не должен делать.
- Объект (Object, [B]) – объект, к которому относится действие.
- Условие (Condition, [C]) – временные, пространственные или регуляторные ограничения.
- Or else (O) – стимул для выполнения или невыполнения действия (например, наказание за нарушение).

Эти элементы объединяются в набор, обозначаемый как ABDICO.

Пример:
Предложение: "Операции, сертифицированные как органические в соответствии с Национальной программой США по органическому производству, должны ежегодно представлять план органической системы, в противном случае сертификация будет отменена."

Разметка:
- Атрибут: "Операции, сертифицированные как органические..."
- Деонтика: "должны"
- Цель: "представлять"
- Объект: "план органической системы"
- Условие: "ежегодно"
- Or else: "в противном случае сертификация будет отменена"

В статье использовался набор из 19 документов, регламентирующих работу пищевой отрасли. Все слова, размеченные вручную как элементы "грамматики институтов", были разделены на обучающее множество (8320 слов) и множество для оценки (922 слова). Разметка текстов в соответствии с правилами "грамматики институтов" производилась с использованием машинного обучения с учителем, в частности нейронных сетей.

"Грамматика институтов", предложенная более двух десятилетий назад, открывает перспективы для ученых, занимающихся государственной политикой и администрированием, заинтересованных в систематическом изучении структуры и понимания политических текстов. Полученный уровень точности автоматической классификации подтверждает полезность такого анализа текстов в рамках подхода "грамматики институтов". Увеличение точности возможно при расширении количества классифицированных текстов, совершенствовании методов обработки естественного языка и машинного обучения.

Теперь ждём применения методов грамматики институтов на дешёвом LLM и ChatGPT.

BY Цифровой геноцид


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gulagdigital/2920

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." The fake Zelenskiy account reached 20,000 followers on Telegram before it was shut down, a remedial action that experts say is all too rare. He adds: "Telegram has become my primary news source."
from ar


Telegram Цифровой геноцид
FROM American