Notice: file_put_contents(): Write of 2631 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 10823 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
دِرَنـــگ | Telegram Webview: k1samani_channel/55 -
Telegram Group & Telegram Channel
🔷 تخمین، احتمال، نرخ‌های پایه

▪️به این سؤال توجه کنید:
بیماری‌ مشخصی به‌طور میان‌گین یک نفر از هر هزار نفر را مبتلا می‌کند. برای تشخیص این بیماری آزمایشی پزشکی طراحی شده است. آزمایش در پنج درصد موارد خطا دارد، به این معنی که نتیجه‌اش برای شخصی که بیمار نیست مثبت می‌شود. فرض کنید به شخصی برمی‌خورید که نتیجه‌ٔ آزمایش‌اش مثبت است. شما چیزی در مورد بیماری و علائم آن نمی‌دانید و فقط بر مبنای نتیجهٔ‌ آزمایش و اطلاعات آماری قضاوت می‌کنید. چند درصد احتمال دارد که این شخص واقعاً بیمار باشد؟ *

▪️بسیاری از ما خواسته یا ناخواسته بر اساس اطلاعات موجود احتمال وقوع پدیده‌ها را تخمین می‌زنیم ولی خیلی‌ وقت‌ها بخش مهمی از اطلاعات را نادیده می‌گیریم. مثلاً در پرسش بالا اغلب به جمله‌ٔ اول توجه نمی‌شود و پاسخی که داده می‌‌شود چیزی در حدود ۹۵ درصد است. درحالی‌که پاسخ درست حدود ۲ درصد است! بله، درست است. در این مثال فقط ۲ درصد احتمال دارد که شخصی که جواب آزمایش‌اش مثبت است واقعاً بیمار باشد.

پاسخ این سؤال را می‌توان به سادگی با استفاده از قاعده‌ی بِیز (Bayes' rule) در نظریه‌ٔ احتمال پیدا کرد ولی حتی کسانی که با نظریه‌ٔ‌ احتمال آشنا نیستند هم با کمی تأمل و دقت به جمله‌ٔ اول سؤال می‌توانند جواب درست را پیدا کنند. اطلاعات جمله‌ٔ اول (ابتلای یک نفر از هر هزار نفر به بیماری) در نظریه‌ٔ احتمال نرخ پایه (base rate) نامیده می‌شود. دانیل کانمن و آموس تورسکی در دهه‌ٔ ۱۹۷۰ میلادی نشان دادند که بی‌توجهی به نرخ‌های پایه می‌تواند به‌ تخمین‌هایی بسیار متفاوت با واقعیت بینجامد.

به‌عنوان یک مثال دیگر فرض کنید یک الگوریتم تشخیص چهره، با استفاده از تصاویر ثبت شده در دوربین مدار بسته، چهره‌ٔ شخصی را به‌عنوان یک تروریست شناسایی می‌کند. اگر احتمال خطای الگوریتم کمتر از یک درصد باشد، چه‌قدر احتمال دارد که شخص شناسایی شده واقعاً تروریست باشد؟ نرخ پایه در این مثال چیست؟ 

▪️تخمین نادرست یا کم‌دقت می‌تواند بسیار هزینه‌ساز باشد. بهتر نیست کمی بیشتر مراقب حدس‌ها و برآوردهایمان باشیم؟ 

* این مثال را می‌توان در مراجع متعددی پیدا کرد که سرچشمهٔ همه‌ٔ آن‌ها مقالهٔ زیر است. نگاهی به آن خالی از لطف نیست:

Amos Tversky  and Daniel Kahneman, “Evidential Impact of Base Rates” (1981).

@k1samani_channel



group-telegram.com/k1samani_channel/55
Create:
Last Update:

🔷 تخمین، احتمال، نرخ‌های پایه

▪️به این سؤال توجه کنید:
بیماری‌ مشخصی به‌طور میان‌گین یک نفر از هر هزار نفر را مبتلا می‌کند. برای تشخیص این بیماری آزمایشی پزشکی طراحی شده است. آزمایش در پنج درصد موارد خطا دارد، به این معنی که نتیجه‌اش برای شخصی که بیمار نیست مثبت می‌شود. فرض کنید به شخصی برمی‌خورید که نتیجه‌ٔ آزمایش‌اش مثبت است. شما چیزی در مورد بیماری و علائم آن نمی‌دانید و فقط بر مبنای نتیجهٔ‌ آزمایش و اطلاعات آماری قضاوت می‌کنید. چند درصد احتمال دارد که این شخص واقعاً بیمار باشد؟ *

▪️بسیاری از ما خواسته یا ناخواسته بر اساس اطلاعات موجود احتمال وقوع پدیده‌ها را تخمین می‌زنیم ولی خیلی‌ وقت‌ها بخش مهمی از اطلاعات را نادیده می‌گیریم. مثلاً در پرسش بالا اغلب به جمله‌ٔ اول توجه نمی‌شود و پاسخی که داده می‌‌شود چیزی در حدود ۹۵ درصد است. درحالی‌که پاسخ درست حدود ۲ درصد است! بله، درست است. در این مثال فقط ۲ درصد احتمال دارد که شخصی که جواب آزمایش‌اش مثبت است واقعاً بیمار باشد.

پاسخ این سؤال را می‌توان به سادگی با استفاده از قاعده‌ی بِیز (Bayes' rule) در نظریه‌ٔ احتمال پیدا کرد ولی حتی کسانی که با نظریه‌ٔ‌ احتمال آشنا نیستند هم با کمی تأمل و دقت به جمله‌ٔ اول سؤال می‌توانند جواب درست را پیدا کنند. اطلاعات جمله‌ٔ اول (ابتلای یک نفر از هر هزار نفر به بیماری) در نظریه‌ٔ احتمال نرخ پایه (base rate) نامیده می‌شود. دانیل کانمن و آموس تورسکی در دهه‌ٔ ۱۹۷۰ میلادی نشان دادند که بی‌توجهی به نرخ‌های پایه می‌تواند به‌ تخمین‌هایی بسیار متفاوت با واقعیت بینجامد.

به‌عنوان یک مثال دیگر فرض کنید یک الگوریتم تشخیص چهره، با استفاده از تصاویر ثبت شده در دوربین مدار بسته، چهره‌ٔ شخصی را به‌عنوان یک تروریست شناسایی می‌کند. اگر احتمال خطای الگوریتم کمتر از یک درصد باشد، چه‌قدر احتمال دارد که شخص شناسایی شده واقعاً تروریست باشد؟ نرخ پایه در این مثال چیست؟ 

▪️تخمین نادرست یا کم‌دقت می‌تواند بسیار هزینه‌ساز باشد. بهتر نیست کمی بیشتر مراقب حدس‌ها و برآوردهایمان باشیم؟ 

* این مثال را می‌توان در مراجع متعددی پیدا کرد که سرچشمهٔ همه‌ٔ آن‌ها مقالهٔ زیر است. نگاهی به آن خالی از لطف نیست:

Amos Tversky  and Daniel Kahneman, “Evidential Impact of Base Rates” (1981).

@k1samani_channel

BY دِرَنـــگ


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/k1samani_channel/55

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation." 'Wild West' Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. False news often spreads via public groups, or chats, with potentially fatal effects.
from ar


Telegram دِرَنـــگ
FROM American