Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/nlpwanderer/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
NLP Wanderer | Telegram Webview: nlpwanderer/46 -
Telegram Group & Telegram Channel
Хочется еще упомянуть несколько важных свойств автоэнкодеров, которые авторы обнаружили в статье

– У фичей есть своя геометрическая структура, где похожия фичи оказываются близки к друг другу (что ожидаемо). Например, Золотые Ворота близки ко всем остальным достопримечательностям СФ, а отдаленно они связаны с другими популярными местами, типа статуи Иисуса в Рио-де-Жанейро
– Одинаковые фичи оказываются близки в автоэнкодерах всех размеров. Различие между ними в том, что в больших экодерах происходит feature splitting – если в маленькой модели мы найдем какое-то общее понятие, то в больших модель оно разобъется на что-то более конкретное. Вот тут есть интерактивный UMAP
– Нашелся также и scaling law:
Если концепт появляется один раз на миллиард токенов, то нам нужно пропорционально миллиарду активных фич в SAE, чтобы найти ту, которая бы уникально описывала этот концепт
– Для 82% фичей не нашлось сильно скоррелированных нейронов
– Хотя SAE тренировались только на тексте, они оказались способны реагировать и на картинки!
– Фичи отвечают как за абстрактные, так и за конкретные концепты. Например, одна и та же фича активируется на общие рассуждение о безопасности кода, и на конкретные примеры такого кода
– Если модели нужны промежуточные размышления, то активируются фичи, которые отвечают за “пропущенный концепт”. На конкретном примере: если модели нужно ответить на вопрос “Кто был главным соперником команды, в которой играл Коби Брайант”, то больше всего на финальный ответ “Boston Celtics” будут влиять фичи “Коби Брайант” -> его команда “Los Angeles Lakers” (пропущенный концепт) -> фича, отвечающая за спортивные противостояния. Я обожаю, когда в статьях такое находят! По-моему это отличная ответчочка на мнение, что LLM это стохастические попугаи и не понимают, что они генерируют

Спасибо, что дочитали этот лонгрид! Мне очень понравилась статья, и если вас тоже заинтриговала тема mechanistic interpretability, авторы предалагют вот этот гайд: https://neelnanda.io/mechanistic-interpretability/getting-started



group-telegram.com/nlpwanderer/46
Create:
Last Update:

Хочется еще упомянуть несколько важных свойств автоэнкодеров, которые авторы обнаружили в статье

– У фичей есть своя геометрическая структура, где похожия фичи оказываются близки к друг другу (что ожидаемо). Например, Золотые Ворота близки ко всем остальным достопримечательностям СФ, а отдаленно они связаны с другими популярными местами, типа статуи Иисуса в Рио-де-Жанейро
– Одинаковые фичи оказываются близки в автоэнкодерах всех размеров. Различие между ними в том, что в больших экодерах происходит feature splitting – если в маленькой модели мы найдем какое-то общее понятие, то в больших модель оно разобъется на что-то более конкретное. Вот тут есть интерактивный UMAP
– Нашелся также и scaling law:
Если концепт появляется один раз на миллиард токенов, то нам нужно пропорционально миллиарду активных фич в SAE, чтобы найти ту, которая бы уникально описывала этот концепт
– Для 82% фичей не нашлось сильно скоррелированных нейронов
– Хотя SAE тренировались только на тексте, они оказались способны реагировать и на картинки!
– Фичи отвечают как за абстрактные, так и за конкретные концепты. Например, одна и та же фича активируется на общие рассуждение о безопасности кода, и на конкретные примеры такого кода
– Если модели нужны промежуточные размышления, то активируются фичи, которые отвечают за “пропущенный концепт”. На конкретном примере: если модели нужно ответить на вопрос “Кто был главным соперником команды, в которой играл Коби Брайант”, то больше всего на финальный ответ “Boston Celtics” будут влиять фичи “Коби Брайант” -> его команда “Los Angeles Lakers” (пропущенный концепт) -> фича, отвечающая за спортивные противостояния. Я обожаю, когда в статьях такое находят! По-моему это отличная ответчочка на мнение, что LLM это стохастические попугаи и не понимают, что они генерируют

Спасибо, что дочитали этот лонгрид! Мне очень понравилась статья, и если вас тоже заинтриговала тема mechanistic interpretability, авторы предалагют вот этот гайд: https://neelnanda.io/mechanistic-interpretability/getting-started

BY NLP Wanderer




Share with your friend now:
group-telegram.com/nlpwanderer/46

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements. In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look. The Russian invasion of Ukraine has been a driving force in markets for the past few weeks.
from ar


Telegram NLP Wanderer
FROM American