Telegram Group & Telegram Channel
#nlp #про_nlp #ai_alignment #длиннопост

🌸Какие ценности у языковых моделей?🌸

Часть 2. Базовые модели, SFT — продолжение

🟣BLOOM — самая большая мультиязычная языковая модель в опен-сорсе. Обучалась на готовом корпусе OSCAR, плюс еще несколько источников — которые вместе прошли дедупликацию и автоматическую чистку от спама + персональных данных. Все вместе назвали новым названием — ROOTS Corpus.
Проведено сравнение с другими языковыми моделями (наконец-то!) по критериям "непредвзятость" (Fairness) и "смещенность" (Bias) из бенчмарка HELM. В среавнении с другими языковыми моделями, BLOOM показывает себя хорошо — лучше только результаты Anthropic, InstructGPT, OPT.
Статья
🟣LaMDa — закрытая языковая модель от Google, виновница новостей о "сознании" нейросетей. В рамках автмоатичсекой оценки качества и общей цели создания модели введена метрика качества SSI — sensibleness, specificity, and interestingness. То есть цель ответов модели — быть разумными, конкретными и интересными.
Отдельно большое внимание уделено безопасности — полная разметка диалогов по более чем 50 категориям возможных нежелательных тематик, плюс привдеена статистика по сбалансированности социодемфакторов самих разметчиков. Метрики по фактологичности и безопасности у модели вышли высокими (около 80%), а вот "интересность" пока проседает в районе 20-30%
Минус: в работе отсутствуют замеры на классических датасетах и бенчмарках (ну конечно, зачем, когда ввели новую метрику и на ней померились)
В работе приводится крайне интересный вывод: (а) масштабирование модели само по себе улучшает качество, но его улучшения в плане безопасности и обоснованности намного отстают от возможностей человека, и (б) сочетание масштабирования и дообучения с помощью качественных данных по SSI значительно улучшает прирост качества по всем показателям безопасности и фактологичности.
Статья

🟣OPT — языковая модель от Мета с масштабом до 175 млрд параметров. Модель оценивается на детекции хейтспича, а также уже известном нам датасете стереотипов CrowS-Pairs и StereoSet (добавляет категорию профессии). авторы приводят честное сравнение: модель показывает себя хуже по почти всем показателям, чем GPT-3, но лучше, чем первая версия BlenderBot.
Статья

🟣BlenderBot 3 — языковая модель с дообучением на диалогах диалоговых задачах. Модель улучшает качество за счет дообучения на специфичных датасетах, для нетоксичности — SaFeRDialogues. Сверху работает классификатор токсичных сообщений, обученный на Википедии (да, если вы не знали, это отличный источник токсичных обсжудений), который не пропускает небезопасные ответы модели.
Оценку на классических датасетах в основном проводили в сравнении с OPT, на собственном датасете: BB лучше справляется на категории возраста, политики, экономики, внешности, но хуже, чем OPT, показывает себя на культурных биасах, половой ориентации.
Своим же классификатором токсичности авторы оценили другие модели на тех же затравках. Тогда как у BlenderBot 6% токсичности, у некоторых вариаций OPT до 70% срабатываний. Подловили!
Статья

Краткий итог:
— пока что общего замера моделей на этических тестах, тестах на безопасность нет.
— все измеряются на разных датасетах, и к тому же, сложно не отметить, что по уму все сделано только у проприетарных моделей, которым более релевантно доказывать свою безопасность — Anthropic, LaMDa, OPT
— у опенсорсных Pythia, CerebrasGPT, OpenLLaMa метрики так себе, а у GPT-J, StableLM даже нет замеров.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/rybolos_channel/673
Create:
Last Update:

#nlp #про_nlp #ai_alignment #длиннопост

🌸Какие ценности у языковых моделей?🌸

Часть 2. Базовые модели, SFT — продолжение

🟣BLOOM — самая большая мультиязычная языковая модель в опен-сорсе. Обучалась на готовом корпусе OSCAR, плюс еще несколько источников — которые вместе прошли дедупликацию и автоматическую чистку от спама + персональных данных. Все вместе назвали новым названием — ROOTS Corpus.
Проведено сравнение с другими языковыми моделями (наконец-то!) по критериям "непредвзятость" (Fairness) и "смещенность" (Bias) из бенчмарка HELM. В среавнении с другими языковыми моделями, BLOOM показывает себя хорошо — лучше только результаты Anthropic, InstructGPT, OPT.
Статья
🟣LaMDa — закрытая языковая модель от Google, виновница новостей о "сознании" нейросетей. В рамках автмоатичсекой оценки качества и общей цели создания модели введена метрика качества SSI — sensibleness, specificity, and interestingness. То есть цель ответов модели — быть разумными, конкретными и интересными.
Отдельно большое внимание уделено безопасности — полная разметка диалогов по более чем 50 категориям возможных нежелательных тематик, плюс привдеена статистика по сбалансированности социодемфакторов самих разметчиков. Метрики по фактологичности и безопасности у модели вышли высокими (около 80%), а вот "интересность" пока проседает в районе 20-30%
Минус: в работе отсутствуют замеры на классических датасетах и бенчмарках (ну конечно, зачем, когда ввели новую метрику и на ней померились)
В работе приводится крайне интересный вывод: (а) масштабирование модели само по себе улучшает качество, но его улучшения в плане безопасности и обоснованности намного отстают от возможностей человека, и (б) сочетание масштабирования и дообучения с помощью качественных данных по SSI значительно улучшает прирост качества по всем показателям безопасности и фактологичности.
Статья

🟣OPT — языковая модель от Мета с масштабом до 175 млрд параметров. Модель оценивается на детекции хейтспича, а также уже известном нам датасете стереотипов CrowS-Pairs и StereoSet (добавляет категорию профессии). авторы приводят честное сравнение: модель показывает себя хуже по почти всем показателям, чем GPT-3, но лучше, чем первая версия BlenderBot.
Статья

🟣BlenderBot 3 — языковая модель с дообучением на диалогах диалоговых задачах. Модель улучшает качество за счет дообучения на специфичных датасетах, для нетоксичности — SaFeRDialogues. Сверху работает классификатор токсичных сообщений, обученный на Википедии (да, если вы не знали, это отличный источник токсичных обсжудений), который не пропускает небезопасные ответы модели.
Оценку на классических датасетах в основном проводили в сравнении с OPT, на собственном датасете: BB лучше справляется на категории возраста, политики, экономики, внешности, но хуже, чем OPT, показывает себя на культурных биасах, половой ориентации.
Своим же классификатором токсичности авторы оценили другие модели на тех же затравках. Тогда как у BlenderBot 6% токсичности, у некоторых вариаций OPT до 70% срабатываний. Подловили!
Статья

Краткий итог:
— пока что общего замера моделей на этических тестах, тестах на безопасность нет.
— все измеряются на разных датасетах, и к тому же, сложно не отметить, что по уму все сделано только у проприетарных моделей, которым более релевантно доказывать свою безопасность — Anthropic, LaMDa, OPT
— у опенсорсных Pythia, CerebrasGPT, OpenLLaMa метрики так себе, а у GPT-J, StableLM даже нет замеров.

BY Kali Novskaya


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/rybolos_channel/673

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. Investors took profits on Friday while they could ahead of the weekend, explained Tom Essaye, founder of Sevens Report Research. Saturday and Sunday could easily bring unfortunate news on the war front—and traders would rather be able to sell any recent winnings at Friday’s earlier prices than wait for a potentially lower price at Monday’s open. Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively.
from ar


Telegram Kali Novskaya
FROM American