Telegram Group & Telegram Channel
О размере эффекта и расчете объема выборки в научных задачах

Я в последнее время активно читаю теорию A/B-тестирования. По сути это классические эксперименты с контрольной и тестовой группами (case/control), с которыми постоянно сталкиваются ученые, но с учетом особенностей бизнеса.

📊 Важным этапом при проведении A/B-тестирования является расчет MDE (minimum detectable effect), минимально обнаруживаемый эффект. Например, в эксперименте мы хотим зафиксировать увеличение конверсии на 2% и мы можем рассчитать необходимый размер выборки для тестовой и контрольной группы, исходя из этого. Для этого нам нужно знать минимально обнаруживаемый размер эффекта (определили выше), дисперсию в контрольной и тестовой группе, а также уровень ошибки первого рода (стандартно 0.05) и желаемую мощность теста (обычно 80%).

На всякий случай напомню: мощность - это вероятность найти статистически значимые различия там, где они действительно есть (то есть единица минус вероятность ошибки II рода, про ошибки мнемоническое правило в прикрепленной картинке)

Меня заинтриговал этот подход, потому что он отталкивается от практических соображений.
🌱Интересно было бы применить такой концепт в биологических исследованиях. Например, сначала определить, какой эффект был бы биологически значимым, и после этого рассчитывать необходимый размер выборки. К примеру, мы изучаем влияние фитогормона на рост корня и знаем по предыдущим экспериментам длину корня растений определенного возраста (также можем рассчитать дисперсию). Можно зафиксировать, что для нас биологически важным будет изменение длины корня на 10%. После этого по формуле MDE, мы можем рассчитать необходимый размер выборки, чтобы зафиксировать такой эффект.
🐀 Хорошо, если полученный размер выборки окажется допустимым для исследования, так как при работе с мышами или другими животными, есть риск, что необходимый статистически размер выборки не одобрит биоэтический комитет.
Но тут есть такая особенность, что чем больше эффект, тем меньше нужна выборка, чтобы его обнаружить. Можно для себя решить, что совсем небольшие изменения не несут особой биологической ценности и рассчитывать выборку для бОльших эффектов.

Как вы думаете, возможен ли такой подход в научных исследованиях?

#product #analytics



group-telegram.com/stats_for_science/111
Create:
Last Update:

О размере эффекта и расчете объема выборки в научных задачах

Я в последнее время активно читаю теорию A/B-тестирования. По сути это классические эксперименты с контрольной и тестовой группами (case/control), с которыми постоянно сталкиваются ученые, но с учетом особенностей бизнеса.

📊 Важным этапом при проведении A/B-тестирования является расчет MDE (minimum detectable effect), минимально обнаруживаемый эффект. Например, в эксперименте мы хотим зафиксировать увеличение конверсии на 2% и мы можем рассчитать необходимый размер выборки для тестовой и контрольной группы, исходя из этого. Для этого нам нужно знать минимально обнаруживаемый размер эффекта (определили выше), дисперсию в контрольной и тестовой группе, а также уровень ошибки первого рода (стандартно 0.05) и желаемую мощность теста (обычно 80%).

На всякий случай напомню: мощность - это вероятность найти статистически значимые различия там, где они действительно есть (то есть единица минус вероятность ошибки II рода, про ошибки мнемоническое правило в прикрепленной картинке)

Меня заинтриговал этот подход, потому что он отталкивается от практических соображений.
🌱Интересно было бы применить такой концепт в биологических исследованиях. Например, сначала определить, какой эффект был бы биологически значимым, и после этого рассчитывать необходимый размер выборки. К примеру, мы изучаем влияние фитогормона на рост корня и знаем по предыдущим экспериментам длину корня растений определенного возраста (также можем рассчитать дисперсию). Можно зафиксировать, что для нас биологически важным будет изменение длины корня на 10%. После этого по формуле MDE, мы можем рассчитать необходимый размер выборки, чтобы зафиксировать такой эффект.
🐀 Хорошо, если полученный размер выборки окажется допустимым для исследования, так как при работе с мышами или другими животными, есть риск, что необходимый статистически размер выборки не одобрит биоэтический комитет.
Но тут есть такая особенность, что чем больше эффект, тем меньше нужна выборка, чтобы его обнаружить. Можно для себя решить, что совсем небольшие изменения не несут особой биологической ценности и рассчитывать выборку для бОльших эффектов.

Как вы думаете, возможен ли такой подход в научных исследованиях?

#product #analytics

BY Статистика и R в науке и аналитике




Share with your friend now:
group-telegram.com/stats_for_science/111

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels. Telegram boasts 500 million users, who share information individually and in groups in relative security. But Telegram's use as a one-way broadcast channel — which followers can join but not reply to — means content from inauthentic accounts can easily reach large, captive and eager audiences. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee.
from ar


Telegram Статистика и R в науке и аналитике
FROM American