Telegram Group & Telegram Channel
Классный отчет со 2 места прошедшей соревы https://www.kaggle.com/competitions/ariel-data-challenge-2024/discussion/543853

В основе лежит Gaussian Process, который есть даже в sklearn, но медленный. Если у нас есть зашумленный ряд или многомерные данные, GP отвечает на вопрос не об истинных значениях в каждой точке, а к какому распределению она принадлежит, опираясь на наблюдаемые значения соседей. Метод байесовский потому что рассматривает все наблюдаемые точки, как случайные величины из многомерного нормального распределения.

GP предполагает, что у близких точек близкие значения, т.е. сигнал в каком-то смысле гладкий. Шум состоит из белого шума равномерного распределения, амплитуду которого надо знать заранее, а так же частотных скорелированных шумов. Каждое наблюдение это истинное значение + шум, поэтому усреднив соседние точки с учетом их корреляций между собой, мы можем лучше оценить их значения. Например, если рассмотреть три точки подряд, значения которых близки, а у третьей сильно отличается, то 3 получит гораздо меньший вес.

Ковариационная функция (ядро) бывает разная, обычно берут радиальную, задавая радиус на котором мы считаем, что локально изменения не сильные. GP в каком-то смысле обучается на данных локально, для каждой окрестности подбирая оптимальные веса восстановления сигнала по соседям.

Я потратил часов 10 в этом соревновании чтобы завести этот метод, обнаружил магию, что он довольно далеко может увести наблюдаемые данные в какой-то локальной области, при этом дальнейшие части пайплайна на этом участке дают более точный результат. Но я бросил, потому что результаты получались так себе, а что шевелить понятия не было. Так что на практике метод сильный, но, возможно придется повозиться, чтобы получить хороший результат.

Бонус: GP на JAX



group-telegram.com/abacabadabacaba404/66
Create:
Last Update:

Классный отчет со 2 места прошедшей соревы https://www.kaggle.com/competitions/ariel-data-challenge-2024/discussion/543853

В основе лежит Gaussian Process, который есть даже в sklearn, но медленный. Если у нас есть зашумленный ряд или многомерные данные, GP отвечает на вопрос не об истинных значениях в каждой точке, а к какому распределению она принадлежит, опираясь на наблюдаемые значения соседей. Метод байесовский потому что рассматривает все наблюдаемые точки, как случайные величины из многомерного нормального распределения.

GP предполагает, что у близких точек близкие значения, т.е. сигнал в каком-то смысле гладкий. Шум состоит из белого шума равномерного распределения, амплитуду которого надо знать заранее, а так же частотных скорелированных шумов. Каждое наблюдение это истинное значение + шум, поэтому усреднив соседние точки с учетом их корреляций между собой, мы можем лучше оценить их значения. Например, если рассмотреть три точки подряд, значения которых близки, а у третьей сильно отличается, то 3 получит гораздо меньший вес.

Ковариационная функция (ядро) бывает разная, обычно берут радиальную, задавая радиус на котором мы считаем, что локально изменения не сильные. GP в каком-то смысле обучается на данных локально, для каждой окрестности подбирая оптимальные веса восстановления сигнала по соседям.

Я потратил часов 10 в этом соревновании чтобы завести этот метод, обнаружил магию, что он довольно далеко может увести наблюдаемые данные в какой-то локальной области, при этом дальнейшие части пайплайна на этом участке дают более точный результат. Но я бросил, потому что результаты получались так себе, а что шевелить понятия не было. Так что на практике метод сильный, но, возможно придется повозиться, чтобы получить хороший результат.

Бонус: GP на JAX

BY adapt compete evolve or die




Share with your friend now:
group-telegram.com/abacabadabacaba404/66

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

'Wild West' Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. Telegram Messenger Blocks Navalny Bot During Russian Election
from br


Telegram adapt compete evolve or die
FROM American