А вот и подоспел новый образовательный контент от Карпатого после его ухода из OpenAI. #ликбез
Андрей написал минимальную имплементациюByte Pair Encoding (BPE) токенайзера, который широко используется в современных LLM, в том числе и в GPT-4.
Токенайзер - это алгоритм, который преобразует текст в последовательность токенов (целых чисел), перед тем, как его скормить в LLM.
Идея BPE очень простая: 1️⃣ Берем Unicode строку и представляем ее в виде последовательности байтов. - Изначально каждый байт - это отдельный токен, их всего 256 уникальных. 2️⃣ Затем находим наиболее частую пару соседних токенов и заменяем её на новый токен с номером (256 + i) → пример на скрине. 3️⃣ Повторяем это дело K раз. В итоге имеем словарь на 256 + K токенов, которые сжимают оригинальную последовательность байтов в более короткую последовательность токенов, закодированных номерами.
Видео лекция про BPE у Карпатого уже в производстве, он обещал скоро ей поделиться!
А пока можете посмотреть разбор BPE (пост+видео) из NLP курса на HuggingFace: ссылка.
А вот и подоспел новый образовательный контент от Карпатого после его ухода из OpenAI. #ликбез
Андрей написал минимальную имплементациюByte Pair Encoding (BPE) токенайзера, который широко используется в современных LLM, в том числе и в GPT-4.
Токенайзер - это алгоритм, который преобразует текст в последовательность токенов (целых чисел), перед тем, как его скормить в LLM.
Идея BPE очень простая: 1️⃣ Берем Unicode строку и представляем ее в виде последовательности байтов. - Изначально каждый байт - это отдельный токен, их всего 256 уникальных. 2️⃣ Затем находим наиболее частую пару соседних токенов и заменяем её на новый токен с номером (256 + i) → пример на скрине. 3️⃣ Повторяем это дело K раз. В итоге имеем словарь на 256 + K токенов, которые сжимают оригинальную последовательность байтов в более короткую последовательность токенов, закодированных номерами.
Видео лекция про BPE у Карпатого уже в производстве, он обещал скоро ей поделиться!
А пока можете посмотреть разбор BPE (пост+видео) из NLP курса на HuggingFace: ссылка.
The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender.
from br