Telegram Group & Telegram Channel
⚡️SD3-Turbo: Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation

Вслед за Stable Diffusion 3 мои друзья опуликовали препринт о дистилляции SD3 в 4-шага, сохраняя качество.

Новый метод - Latent Adversarial Diffusion Distillation (LADD), который похож на ADD (был пост про него), но с рядом отличий:

↪️ И учитель и студент тут на архитектуре SD3 на базе трансформеров. Самая большая и самая лучшая модель - 8B параметров.

↪️ Вместо DINOv2 дискриминатора, работающего на RGB пикселях, в этой статье предлагают все же вернуться к дискриминатору в latent space, чтобы работало быстрее и жрало меньше памяти.

↪️ В качестве дискриминатора берут копию учителя (то есть дискриминатор тренировался не дискриминативно, как в случае DINO, а генеративно). После каждого attention блока добавляют голову дискриминатора с 2D conv слоями, классифицирующую real/fake. Таким образом дискриминатор смотрит не только на финалный результат, но и на все промежуточные фичи, что усиливает тренировочный сигнал.

↪️ Тренят на картинках с разным aspect ratio, а не только на квадратах 1:1.

↪️Убрали  L2 reconstruction loss между выходами Учителя и Студента. Говорят, что тупо дискриминатора достаточно, если умно выбрать распределение семплирования шагов t.

↪️ Во время трейна более часто сеплируют t с большим шумом, чтобы студент лучше учился генерить глобальную структуру объектов.

↪️ Дистиллируют на синтетических данных, которые сгенерил учитель, а не на фото из датасета, как это было в ADD.

Еще из прикольного показали, что DPO-LoRA тюнинг хорошо так добрасывает в качество генераций студента.

Итого, получаем SD3-Turbo модель, которая за 4 шага выдает красивые картинки. Судя по небольшому Human Eval, который авторы провели всего на 128 промптах, по image quality студент сравним с учителем. А вот prompt alignment у студента хромает, что в целом ожидаемо.

Ещё показали, что SD3-Turbo лучше чем Midjourney 6 и по качеству и по prompt alignment, что удивляет 🫥. Ждем веса, чтобы провести reality check!

Статья

@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2491
Create:
Last Update:

⚡️SD3-Turbo: Fast High-Resolution Image Synthesis with Latent Adversarial Diffusion Distillation

Вслед за Stable Diffusion 3 мои друзья опуликовали препринт о дистилляции SD3 в 4-шага, сохраняя качество.

Новый метод - Latent Adversarial Diffusion Distillation (LADD), который похож на ADD (был пост про него), но с рядом отличий:

↪️ И учитель и студент тут на архитектуре SD3 на базе трансформеров. Самая большая и самая лучшая модель - 8B параметров.

↪️ Вместо DINOv2 дискриминатора, работающего на RGB пикселях, в этой статье предлагают все же вернуться к дискриминатору в latent space, чтобы работало быстрее и жрало меньше памяти.

↪️ В качестве дискриминатора берут копию учителя (то есть дискриминатор тренировался не дискриминативно, как в случае DINO, а генеративно). После каждого attention блока добавляют голову дискриминатора с 2D conv слоями, классифицирующую real/fake. Таким образом дискриминатор смотрит не только на финалный результат, но и на все промежуточные фичи, что усиливает тренировочный сигнал.

↪️ Тренят на картинках с разным aspect ratio, а не только на квадратах 1:1.

↪️Убрали  L2 reconstruction loss между выходами Учителя и Студента. Говорят, что тупо дискриминатора достаточно, если умно выбрать распределение семплирования шагов t.

↪️ Во время трейна более часто сеплируют t с большим шумом, чтобы студент лучше учился генерить глобальную структуру объектов.

↪️ Дистиллируют на синтетических данных, которые сгенерил учитель, а не на фото из датасета, как это было в ADD.

Еще из прикольного показали, что DPO-LoRA тюнинг хорошо так добрасывает в качество генераций студента.

Итого, получаем SD3-Turbo модель, которая за 4 шага выдает красивые картинки. Судя по небольшому Human Eval, который авторы провели всего на 128 промптах, по image quality студент сравним с учителем. А вот prompt alignment у студента хромает, что в целом ожидаемо.

Ещё показали, что SD3-Turbo лучше чем Midjourney 6 и по качеству и по prompt alignment, что удивляет 🫥. Ждем веса, чтобы провести reality check!

Статья

@ai_newz

BY эйай ньюз






Share with your friend now:
group-telegram.com/ai_newz/2491

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. To that end, when files are actively downloading, a new icon now appears in the Search bar that users can tap to view and manage downloads, pause and resume all downloads or just individual items, and select one to increase its priority or view it in a chat. The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns
from br


Telegram эйай ньюз
FROM American