Notice: file_put_contents(): Write of 11343 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50
эйай ньюз | Telegram Webview: ai_newz/2792 -
Telegram Group & Telegram Channel
Когда у нас закончатся данные для тренировки?

Короткий ответ - осталось на донышке. Если говорить о текстовых.

Ребята из Epoch AI провели добротную оценку оставшейся текстовой информации во всем вебе.

Всего примерно 500Т токенов, из них юзабельно от силы 100Т. Иии закончатся они уже к 28 году... если брать историческую скорость развития.

Но уважаемые коллеги из Мета показали нам, что количество токенов, которое оптимально использовать для модели фиксированного размера (шиншила оптимал), сильно занижено. А точнее, если есть лишний компьют, то можно и потренировать и дольше, чтобы выжать из модели всё до конца.

Так вот если перетренировывать модели в 5 раз, то дата у нас закончится в 27м, а если в 100 раз, то на следующий новый год в 25м : )
Для справки, если забыли, то LlaMa3-8B перетренировали в 70 раз. Вот здесь об этом писал подробнее.

Что делать?

Оказалось, что у соцсетей есть жёсткий читкод. До этого говорилось только об открытой инфе, которую можно нагуглить. Оказывается, в чатиках в 10 раз (очень примерно) больше данных чем во всем вебе.

Поэтому те компании, которые научатся использовать эти данные могут оказаться на коне. Хотя данные из соцсетей и так парсят все кому не лень, но сделать это на большом масштабе по-черному вряд-ли получится из-за лимитов и банов.

Еще есть второй способ выхода из данного плато (все равно в чатиках какая-то дичь) – это synthetic data, когда нейросетки "учат" друг друга. Но там есть свои ещё нерешённые проблемы с качеством таких данных.

Ещё добавлю сюда, что мультимодальные данные (вроде видео с YouTube) будут в скором времени тоже очень сильно решать для больших нейросетей. Пока ведь этот богатый ресурс из миллионов часов видео никто активно не использует для обучения.

В общем, если с текстовыми данными и будет затык в ближайшие 5 лет, то есть ещё куча мультимодальных данных (подкасты, видео, игры). А ещё мы сможем запустить роботов собирать данные в реальном мире, как например это делает Тесла.

Тред
Репорт 

@ai_newz



group-telegram.com/ai_newz/2792
Create:
Last Update:

Когда у нас закончатся данные для тренировки?

Короткий ответ - осталось на донышке. Если говорить о текстовых.

Ребята из Epoch AI провели добротную оценку оставшейся текстовой информации во всем вебе.

Всего примерно 500Т токенов, из них юзабельно от силы 100Т. Иии закончатся они уже к 28 году... если брать историческую скорость развития.

Но уважаемые коллеги из Мета показали нам, что количество токенов, которое оптимально использовать для модели фиксированного размера (шиншила оптимал), сильно занижено. А точнее, если есть лишний компьют, то можно и потренировать и дольше, чтобы выжать из модели всё до конца.

Так вот если перетренировывать модели в 5 раз, то дата у нас закончится в 27м, а если в 100 раз, то на следующий новый год в 25м : )
Для справки, если забыли, то LlaMa3-8B перетренировали в 70 раз. Вот здесь об этом писал подробнее.

Что делать?

Оказалось, что у соцсетей есть жёсткий читкод. До этого говорилось только об открытой инфе, которую можно нагуглить. Оказывается, в чатиках в 10 раз (очень примерно) больше данных чем во всем вебе.

Поэтому те компании, которые научатся использовать эти данные могут оказаться на коне. Хотя данные из соцсетей и так парсят все кому не лень, но сделать это на большом масштабе по-черному вряд-ли получится из-за лимитов и банов.

Еще есть второй способ выхода из данного плато (все равно в чатиках какая-то дичь) – это synthetic data, когда нейросетки "учат" друг друга. Но там есть свои ещё нерешённые проблемы с качеством таких данных.

Ещё добавлю сюда, что мультимодальные данные (вроде видео с YouTube) будут в скором времени тоже очень сильно решать для больших нейросетей. Пока ведь этот богатый ресурс из миллионов часов видео никто активно не использует для обучения.

В общем, если с текстовыми данными и будет затык в ближайшие 5 лет, то есть ещё куча мультимодальных данных (подкасты, видео, игры). А ещё мы сможем запустить роботов собирать данные в реальном мире, как например это делает Тесла.

Тред
Репорт 

@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/2792

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so. Crude oil prices edged higher after tumbling on Thursday, when U.S. West Texas intermediate slid back below $110 per barrel after topping as much as $130 a barrel in recent sessions. Still, gas prices at the pump rose to fresh highs. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. Telegram boasts 500 million users, who share information individually and in groups in relative security. But Telegram's use as a one-way broadcast channel — which followers can join but not reply to — means content from inauthentic accounts can easily reach large, captive and eager audiences. The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych.
from br


Telegram эйай ньюз
FROM American