Telegram Group & Telegram Channel
▶️ Продолжение

Начнем с Сollaborative opportunity discovery - что это такое?
Это процесс, с которого каждая data инициатива обязательно должна начинаться. В нем дата-специалисты совместно с C-level лидерами и обычными сотрудниками находят те юз-кейсы, где данные и AI могут решить значительную бизнес-проблему или предоставить компании возможность для роста.

В прошлом главная проблема была в том, что дата-сайентисты часто брались за проекты, которые на самом деле не особо нужны бизнесу. Не редко это происходило из-за shiny-object синдрома, который вспыхивает когда релизелась новая SOTA (state-of-the-art) модель и хочется с ней поэкспериментировать, независимо от того, подходит ли модель для решения важных бизнес-проблем или нет. Типа, выходит новая крутая модель, и все такие: "Ооо, давайте ее попробуем!" (Кто из ML-инженеров такое никогда не испытывал, тот пусть первый бросит в меня камень! 🥸).

Раньше opportunity discovery было (и до сих пор часто является) обязанностью только data команды. Но это неправильный подход, потому что эти команды чаще всего близки только к data science workflow, а для бизнеса и клиентов они часто как чужие. Особенно опасно, если специалисты этого не осознают – это происходит когда дата-специалисты собрали такое огромное количество данных, что сами начинают чувствовать себя экспертами в бизнесе. Частый результат – это так называемые инсайты от Капитана Очевидности, которые не имеют никакой бизнес-ценности, но добыча которых требовала большого количество времени. Общая картина получалась такой: ещё в 2020 году MIT Sloan Management Review и BCG сообщали, что, хоть 60% компаний и внедрили какую-то форму AI, только 10% достигли значительной финансовой отдачи.

Как правильно проводить opportunity discovery? Opportunity discovery состоит из двух частей: Top-down и Bottom-up.

📌 Top-down opportunity discovery – это коллаборация между data specialists и C-level лидерами. Data команды определяют, какие бизнес процессы, связанные с каждой целью, предоставленной C-level, они могли бы оптимизировать, чтобы принести компании ценность. Потом необходимо найти экспертов по этим процессам и выявить болевые точки и потребности.

📌 Bottom-up opportunity discovery – это коллаборация между спецами по данным и обычными работниками. Для технических команд часто является стандартом просто выполнять то, что напрямую от них требует компания. Но сейчас планка должна быть выше - достижение бизнес-результатов, через фундаментальное понимание нужд компании и проактивное предложение как это осуществить технически. Этот процесс сосредоточен на оценке текущего состояния бизнеса и выявлении короткосрочных возможностей для компании. По сравнению с Top-Down opportunities, bottom-up – это более постепенные улучшения существующих продуктов и они проще в реализации, чем то, что обычно получается из Top-Down discovery.

Мы будем, конечно, продолжать эту серию.
Но чтобы не зацикливаться на одной и той же теме и время от времени «переключаться», в следующем посте я хочу открыть новую рубрику: 🔥
разбор AI-продуктов с обеих сторон - технической (какие модели и технологии используются) и бизнесовой (как это монетизируется, кто целевая аудитория и т.д.).

Думаю, будет очень интересно пообсуждать это вместе! До скорого!

#datapm #aipm
@ainastia
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ainastia/27
Create:
Last Update:

▶️ Продолжение

Начнем с Сollaborative opportunity discovery - что это такое?
Это процесс, с которого каждая data инициатива обязательно должна начинаться. В нем дата-специалисты совместно с C-level лидерами и обычными сотрудниками находят те юз-кейсы, где данные и AI могут решить значительную бизнес-проблему или предоставить компании возможность для роста.

В прошлом главная проблема была в том, что дата-сайентисты часто брались за проекты, которые на самом деле не особо нужны бизнесу. Не редко это происходило из-за shiny-object синдрома, который вспыхивает когда релизелась новая SOTA (state-of-the-art) модель и хочется с ней поэкспериментировать, независимо от того, подходит ли модель для решения важных бизнес-проблем или нет. Типа, выходит новая крутая модель, и все такие: "Ооо, давайте ее попробуем!" (Кто из ML-инженеров такое никогда не испытывал, тот пусть первый бросит в меня камень! 🥸).

Раньше opportunity discovery было (и до сих пор часто является) обязанностью только data команды. Но это неправильный подход, потому что эти команды чаще всего близки только к data science workflow, а для бизнеса и клиентов они часто как чужие. Особенно опасно, если специалисты этого не осознают – это происходит когда дата-специалисты собрали такое огромное количество данных, что сами начинают чувствовать себя экспертами в бизнесе. Частый результат – это так называемые инсайты от Капитана Очевидности, которые не имеют никакой бизнес-ценности, но добыча которых требовала большого количество времени. Общая картина получалась такой: ещё в 2020 году MIT Sloan Management Review и BCG сообщали, что, хоть 60% компаний и внедрили какую-то форму AI, только 10% достигли значительной финансовой отдачи.

Как правильно проводить opportunity discovery? Opportunity discovery состоит из двух частей: Top-down и Bottom-up.

📌 Top-down opportunity discovery – это коллаборация между data specialists и C-level лидерами. Data команды определяют, какие бизнес процессы, связанные с каждой целью, предоставленной C-level, они могли бы оптимизировать, чтобы принести компании ценность. Потом необходимо найти экспертов по этим процессам и выявить болевые точки и потребности.

📌 Bottom-up opportunity discovery – это коллаборация между спецами по данным и обычными работниками. Для технических команд часто является стандартом просто выполнять то, что напрямую от них требует компания. Но сейчас планка должна быть выше - достижение бизнес-результатов, через фундаментальное понимание нужд компании и проактивное предложение как это осуществить технически. Этот процесс сосредоточен на оценке текущего состояния бизнеса и выявлении короткосрочных возможностей для компании. По сравнению с Top-Down opportunities, bottom-up – это более постепенные улучшения существующих продуктов и они проще в реализации, чем то, что обычно получается из Top-Down discovery.

Мы будем, конечно, продолжать эту серию.
Но чтобы не зацикливаться на одной и той же теме и время от времени «переключаться», в следующем посте я хочу открыть новую рубрику: 🔥
разбор AI-продуктов с обеих сторон - технической (какие модели и технологии используются) и бизнесовой (как это монетизируется, кто целевая аудитория и т.д.).

Думаю, будет очень интересно пообсуждать это вместе! До скорого!

#datapm #aipm
@ainastia

BY Anastasia.ai – Tech Entrepreneur in🇨🇭




Share with your friend now:
group-telegram.com/ainastia/27

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. Some privacy experts say Telegram is not secure enough In a statement, the regulator said the search and seizure operation was carried out against seven individuals and one corporate entity at multiple locations in Ahmedabad and Bhavnagar in Gujarat, Neemuch in Madhya Pradesh, Delhi, and Mumbai. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. For tech stocks, “the main thing is yields,” Essaye said.
from br


Telegram Anastasia.ai – Tech Entrepreneur in🇨🇭
FROM American