Telegram Group & Telegram Channel
Опенсорса много не бывает. Сегодня VK запустил инициативу OpenVK, в рамках которой будет выкладывать в open source свои проекты по нескольким направлениям, включая ИИ. Пока основной площадкой будет GitHub, но в перспективе компания готовится работать и с отечественными Git-платформами.

На старте разработчики опубликовали исходный код платформы Tarantool для создания высоконагруженных приложений, системы StatsHouse для визуализации данных для мониторинга, дизайн-системы VKUI для создания удобных интерфейсов и ряд других. А оформлено всё это как у Яндекса, на отдельном лендинге со ссылками и описанием (хотя источники вдохновения у обоих понятно какие).

🤖 В OpenVK также будут доступны ИИ-модели и библиотеки для их создания. Но о собственной open source LLM пока речи не идёт, что выглядит удивительно после того парада моделей, который мы наблюдали в исполнении MTS AI, Т-Банка и Сбера. Кажется, как и в Яндексе, в VK свои карты раскрывать не спешат.

Зато уже доступна модель EmoSpeech для синтеза речи, обученная на фонемных последовательностях. Она позволяет придать искусственной речи правильные эмоциональные оттенки при озвучке текста нейросетями. Интегрировать решение можно с любой моделью Text-to-Speech, а при наличии датасета — обучить работе с нужным языком (по умолчанию работает только с английским).

У Яндекса тоже есть инструмент для генерации речи, но в открытый доступ компания выложила не его исходный код, а свои правила работы с технологией. Но там речь всё-таки идёт о вопросах взаимодействия с реальными дикторами и генерации контента с их голосами.

💻 Отдельно отметим, что среди опенсорс-разработок VK также будут доступны энкодеры. Их используют для задач обработки естественного языка, таких как классификация и семантический поиск. Энкодеры преобразует текст в семантические представления, которые помогают системе понять смысл текста, а не просто искать совпадения по словам.

Это позволяет эффективно работать с перефразированием и синонимами. На основе семантических представлений можно легко обучить мощные классификаторы для определения, например, токсичности или спама в тексте (трепещите, боты в комментариях!)
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/antidigital/8719
Create:
Last Update:

Опенсорса много не бывает. Сегодня VK запустил инициативу OpenVK, в рамках которой будет выкладывать в open source свои проекты по нескольким направлениям, включая ИИ. Пока основной площадкой будет GitHub, но в перспективе компания готовится работать и с отечественными Git-платформами.

На старте разработчики опубликовали исходный код платформы Tarantool для создания высоконагруженных приложений, системы StatsHouse для визуализации данных для мониторинга, дизайн-системы VKUI для создания удобных интерфейсов и ряд других. А оформлено всё это как у Яндекса, на отдельном лендинге со ссылками и описанием (хотя источники вдохновения у обоих понятно какие).

🤖 В OpenVK также будут доступны ИИ-модели и библиотеки для их создания. Но о собственной open source LLM пока речи не идёт, что выглядит удивительно после того парада моделей, который мы наблюдали в исполнении MTS AI, Т-Банка и Сбера. Кажется, как и в Яндексе, в VK свои карты раскрывать не спешат.

Зато уже доступна модель EmoSpeech для синтеза речи, обученная на фонемных последовательностях. Она позволяет придать искусственной речи правильные эмоциональные оттенки при озвучке текста нейросетями. Интегрировать решение можно с любой моделью Text-to-Speech, а при наличии датасета — обучить работе с нужным языком (по умолчанию работает только с английским).

У Яндекса тоже есть инструмент для генерации речи, но в открытый доступ компания выложила не его исходный код, а свои правила работы с технологией. Но там речь всё-таки идёт о вопросах взаимодействия с реальными дикторами и генерации контента с их голосами.

💻 Отдельно отметим, что среди опенсорс-разработок VK также будут доступны энкодеры. Их используют для задач обработки естественного языка, таких как классификация и семантический поиск. Энкодеры преобразует текст в семантические представления, которые помогают системе понять смысл текста, а не просто искать совпадения по словам.

Это позволяет эффективно работать с перефразированием и синонимами. На основе семантических представлений можно легко обучить мощные классификаторы для определения, например, токсичности или спама в тексте (трепещите, боты в комментариях!)

BY Нецифровая экономика




Share with your friend now:
group-telegram.com/antidigital/8719

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers.
from br


Telegram Нецифровая экономика
FROM American