У hugging face вышел качественный тех репорт о том, как они собирали свой датасет fineweb. Это набор дампов common-crawl(архив страниц из интернета), который почистили и превратили в 15T токенов на английском.
Почему круто. Common-crawl – это основной источник данных для претрейна LLM, если ты не open ai или antropic с собственными краулерами и парсерами. Его все по разному обрабывают или используют его производные. Обычно эти производные датасеты получены путем применения простых эваристик и максимум какой-то маленькой LM, обученной на википедии.
Но репортов с экспериментами на данных на таком масштабе с подробным описанием почти нет. А тут ребята 100k+ h100 gpu часов потратили на все и подробно описали.
Еще они выложили сабсет образовательных документов из кроула. Такой масштаб фильтрации классификаторами в open-source еще никто не выкладывал. И это как раз тот датасет, которым никто не делится (ни лама, ни мистраль, ни китайцы вроде qwen), но который все делают.
Все в статье, это по сути ровно то, чем моя команда занимается. Тут и про экстракцию кроула, и про фильтрацию, и про дедупликацию, и про классификаторы.
P.S. Если на этом посте наберется хотя бы 1 огонек – напишу разбор репорта с комментариями.
У hugging face вышел качественный тех репорт о том, как они собирали свой датасет fineweb. Это набор дампов common-crawl(архив страниц из интернета), который почистили и превратили в 15T токенов на английском.
Почему круто. Common-crawl – это основной источник данных для претрейна LLM, если ты не open ai или antropic с собственными краулерами и парсерами. Его все по разному обрабывают или используют его производные. Обычно эти производные датасеты получены путем применения простых эваристик и максимум какой-то маленькой LM, обученной на википедии.
Но репортов с экспериментами на данных на таком масштабе с подробным описанием почти нет. А тут ребята 100k+ h100 gpu часов потратили на все и подробно описали.
Еще они выложили сабсет образовательных документов из кроула. Такой масштаб фильтрации классификаторами в open-source еще никто не выкладывал. И это как раз тот датасет, которым никто не делится (ни лама, ни мистраль, ни китайцы вроде qwen), но который все делают.
Все в статье, это по сути ровно то, чем моя команда занимается. Тут и про экстракцию кроула, и про фильтрацию, и про дедупликацию, и про классификаторы.
P.S. Если на этом посте наберется хотя бы 1 огонек – напишу разбор репорта с комментариями.
Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.” At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children.
from br