Warning: file_put_contents(aCache/aDaily/post/cme_channel/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Непрерывное математическое образование | Telegram Webview: cme_channel/4009 -
Telegram Group & Telegram Channel
Пусть p — большое простое число (хотя бы 5). В каком диапазоне известна p-компонента в стабильных гомотопических группах сфер?

Зафиксирую тут, что нагуглил. Удобно обозначить q:=2p-2.

-1. Методом убивающих пространств легко показать, что в размерностях <2q есть только одна копия Z/p, которая сидит в q-ой группе. То есть легко досчитать примерно до ~4p. При p=5 получается 15.

0. Hirosi Toda в серии статей "p-primary components of homotopy groups" (1958-1959) досчитал до p^2q-4, то есть примерно до 2p^3. При p=5 получается 196. Видимо, он комбинировал метод убивающих пространств с EHP-последовательностями, композициями, скобками Тоды. В книжке "Композиционные методы..." почему-то сформулирован результат только до размерности pq-2 ~ 2p^2; не знаю, почему.

1. Методами Тоды много считал Shichiro Oka. В серии статей The Stable Homotopy Groups of Spheres (1971-1975) этим методом он посчитал компоненты до размерности (2p^2+p-2)q-6, то есть примерно до 4p^3. При p=5 получается 416.

2. Комбинируя с вычислениями Накамуры* второго листа в с.п. Адамса, Ока смог продвинуться ещё на 4p размерностей и добраться до (2p^2+p)q-4. При p=5 получается 436.

3. Используя те же вычисления Накамуры, но для с.п. Адамса-Новикова (и спектра Брауна-Петерсона, следуя Миллеру и Нейзендорферу), Marc Aubry посчитал компоненты до размерности
(3p^2+4p)q-1, то есть примерно до 6p^3. При p=5 получается 759.
(статья "Calculs de groupes d'homotopie stables de la sphere, par la suite spectrale d'Adams-Novikov", 1984. Это диссертация под руководством Лемэра.)

4. В книжке Douglas Ravenel "Complex cobordism and stable homotopy groups of spheres" (1986) предлагается некий "метод бесконечного спуска" (использующий, помимо с.п. А.-Н., всякие накопленные знания про BP, хроматическую теорию, введённые Равенелем спектры T(m)...).
Равенел не говорит, насколько далеко удаётся продвинуться для любого p, но при p=5 проводит показательные вычисления и добирается до 999. В любом случае, это похоже на ~8p^3.

5. Наконец, в тексте Hirofumi Nakai, Douglas Ravenel "The method of infinite descent in stable homotopy theory II" высказана надежда, что примерно теми же методами можно добраться примерно до p^3q ~ 2p^4. Этот текст появился как препринт в 2008, выложен на архив в 2018, опубликован в 2024. При публикации в нём появился абзац:

It is unlikely that either author will take up this computational project any time soon. The purpose of the present paper is to document what we believe to be the most promising method of extending the computation of [Rav04, Chapter 7] in hopes that some more energetic mathematicians will use it in the future.

*Osamu Nakamura, On the cohomology of the mod p Steenrod algebra (1975)

P.S. Конечно, в описанных размерностях известны не только группы, но и композиционные умножения между ними; у Aubry соответствующая алгебра даже задана образующими и соотношениями



group-telegram.com/cme_channel/4009
Create:
Last Update:

Пусть p — большое простое число (хотя бы 5). В каком диапазоне известна p-компонента в стабильных гомотопических группах сфер?

Зафиксирую тут, что нагуглил. Удобно обозначить q:=2p-2.

-1. Методом убивающих пространств легко показать, что в размерностях <2q есть только одна копия Z/p, которая сидит в q-ой группе. То есть легко досчитать примерно до ~4p. При p=5 получается 15.

0. Hirosi Toda в серии статей "p-primary components of homotopy groups" (1958-1959) досчитал до p^2q-4, то есть примерно до 2p^3. При p=5 получается 196. Видимо, он комбинировал метод убивающих пространств с EHP-последовательностями, композициями, скобками Тоды. В книжке "Композиционные методы..." почему-то сформулирован результат только до размерности pq-2 ~ 2p^2; не знаю, почему.

1. Методами Тоды много считал Shichiro Oka. В серии статей The Stable Homotopy Groups of Spheres (1971-1975) этим методом он посчитал компоненты до размерности (2p^2+p-2)q-6, то есть примерно до 4p^3. При p=5 получается 416.

2. Комбинируя с вычислениями Накамуры* второго листа в с.п. Адамса, Ока смог продвинуться ещё на 4p размерностей и добраться до (2p^2+p)q-4. При p=5 получается 436.

3. Используя те же вычисления Накамуры, но для с.п. Адамса-Новикова (и спектра Брауна-Петерсона, следуя Миллеру и Нейзендорферу), Marc Aubry посчитал компоненты до размерности
(3p^2+4p)q-1, то есть примерно до 6p^3. При p=5 получается 759.
(статья "Calculs de groupes d'homotopie stables de la sphere, par la suite spectrale d'Adams-Novikov", 1984. Это диссертация под руководством Лемэра.)

4. В книжке Douglas Ravenel "Complex cobordism and stable homotopy groups of spheres" (1986) предлагается некий "метод бесконечного спуска" (использующий, помимо с.п. А.-Н., всякие накопленные знания про BP, хроматическую теорию, введённые Равенелем спектры T(m)...).
Равенел не говорит, насколько далеко удаётся продвинуться для любого p, но при p=5 проводит показательные вычисления и добирается до 999. В любом случае, это похоже на ~8p^3.

5. Наконец, в тексте Hirofumi Nakai, Douglas Ravenel "The method of infinite descent in stable homotopy theory II" высказана надежда, что примерно теми же методами можно добраться примерно до p^3q ~ 2p^4. Этот текст появился как препринт в 2008, выложен на архив в 2018, опубликован в 2024. При публикации в нём появился абзац:

It is unlikely that either author will take up this computational project any time soon. The purpose of the present paper is to document what we believe to be the most promising method of extending the computation of [Rav04, Chapter 7] in hopes that some more energetic mathematicians will use it in the future.

*Osamu Nakamura, On the cohomology of the mod p Steenrod algebra (1975)

P.S. Конечно, в описанных размерностях известны не только группы, но и композиционные умножения между ними; у Aubry соответствующая алгебра даже задана образующими и соотношениями

BY Непрерывное математическое образование


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/cme_channel/4009

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so. Just days after Russia invaded Ukraine, Durov wrote that Telegram was "increasingly becoming a source of unverified information," and he worried about the app being used to "incite ethnic hatred." But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market.
from br


Telegram Непрерывное математическое образование
FROM American