Telegram Group & Telegram Channel
📢 Релиз Moondream 2B

Новая vision модель для эйдж девайсов

Поддерживает структурированные выводы, улучшенное понимание текста, отслежтвание взгляда.



from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image

model = AutoModelForCausalLM.from_pretrained(
"vikhyatk/moondream2",
revision="2025-01-09",
trust_remote_code=True,
# Uncomment to run on GPU.
# device_map={"": "cuda"}
)

# Captioning
print("Short caption:")
print(model.caption(image, length="short")["caption"])

print("\nNormal caption:")
for t in model.caption(image, length="normal", stream=True)["caption"]:
# Streaming generation example, supported for caption() and detect()
print(t, end="", flush=True)
print(model.caption(image, length="normal"))

# Visual Querying
print("\nVisual query: 'How many people are in the image?'")
print(model.query(image, "How many people are in the image?")["answer"])

# Object Detection
print("\nObject detection: 'face'")
objects = model.detect(image, "face")["objects"]
print(f"Found {len(objects)} face(s)")

# Pointing
print("\nPointing: 'person'")
points = model.point(image, "person")["points"]
print(f"Found {len(points)} person(s)")


https://huggingface.co/vikhyatk/moondream2


HF: https://huggingface.co/vikhyatk/moondream2

Demo: https://moondream.ai/playground

Github: https://github.com/vikhyat/moondream

@data_analysis_ml



group-telegram.com/data_analysis_ml/3040
Create:
Last Update:

📢 Релиз Moondream 2B

Новая vision модель для эйдж девайсов

Поддерживает структурированные выводы, улучшенное понимание текста, отслежтвание взгляда.



from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image

model = AutoModelForCausalLM.from_pretrained(
"vikhyatk/moondream2",
revision="2025-01-09",
trust_remote_code=True,
# Uncomment to run on GPU.
# device_map={"": "cuda"}
)

# Captioning
print("Short caption:")
print(model.caption(image, length="short")["caption"])

print("\nNormal caption:")
for t in model.caption(image, length="normal", stream=True)["caption"]:
# Streaming generation example, supported for caption() and detect()
print(t, end="", flush=True)
print(model.caption(image, length="normal"))

# Visual Querying
print("\nVisual query: 'How many people are in the image?'")
print(model.query(image, "How many people are in the image?")["answer"])

# Object Detection
print("\nObject detection: 'face'")
objects = model.detect(image, "face")["objects"]
print(f"Found {len(objects)} face(s)")

# Pointing
print("\nPointing: 'person'")
points = model.point(image, "person")["points"]
print(f"Found {len(points)} person(s)")


https://huggingface.co/vikhyatk/moondream2


HF: https://huggingface.co/vikhyatk/moondream2

Demo: https://moondream.ai/playground

Github: https://github.com/vikhyat/moondream

@data_analysis_ml

BY Анализ данных (Data analysis)





Share with your friend now:
group-telegram.com/data_analysis_ml/3040

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. Emerson Brooking, a disinformation expert at the Atlantic Council's Digital Forensic Research Lab, said: "Back in the Wild West period of content moderation, like 2014 or 2015, maybe they could have gotten away with it, but it stands in marked contrast with how other companies run themselves today." In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback.
from br


Telegram Анализ данных (Data analysis)
FROM American