Telegram Group & Telegram Channel
InstantStyle-Plus: Style Transfer with Content-Preserving in Text-to-Image Generation #style_transfer #paper

Статья (июнь 2024) про стилизацию картинок в задачах image-to-image. Вторая статья в серии статей (InstantStyle, InstantStyle-Plus, CSGO) от этих же авторов. На вход принимается картинка стиля (образец) и исходная картинка объекта, который хотим менять. На выход выдается сгенерированная картинка, в которой исходный объект перерисован в другом стиле.

В статье много раз отмечается, что основной фокус сделан на сохранении исходного объекта, чтобы вносить в него как можно меньше искажений при изменении стиля. Cистема построена на основе SDXL, fine-tuning не требуется, вся работа — в режиме инференса.

Обуславливание выполняется одновременно за счет нескольких механизмов:

для контента:
- картинка объекта переводится в латентное пространство и там делается инверсия в зашумленное состояние (используется модель ReNoise). С этого нового начального состояния начинается процесс денойзинга.
- картинка объекта проходит через Tile ControlNet (особый вид ControlNet, изначально предназначен для upscaling, предобучен на больших картинках, составленных из повторяющихся маленьких картинок) и подается на каждом шаге денойзинга через cross-attention.
- картинка объекта проходит через Image Adapter (IP-Adapter) и тоже подается на каждом шаге денойзинга через cross-attention.

для стиля:
- картинка стиля проходит через Style Adapter (IP-Adapter) и подается на каждом шаге денойзинга через cross-attention (в соответствии с рекомендациями InstantStyle — только в один конкретный блок U-net).
- на каждом шаге результат сравнивается с картинкой стиля через CLIP Style Similarity, и эта разность используется в качестве guidance на следующих шагах денойзинга.

🔥Project Page
💻Github
📜Paper

@gentech_lab
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/gentech_lab/71
Create:
Last Update:

InstantStyle-Plus: Style Transfer with Content-Preserving in Text-to-Image Generation #style_transfer #paper

Статья (июнь 2024) про стилизацию картинок в задачах image-to-image. Вторая статья в серии статей (InstantStyle, InstantStyle-Plus, CSGO) от этих же авторов. На вход принимается картинка стиля (образец) и исходная картинка объекта, который хотим менять. На выход выдается сгенерированная картинка, в которой исходный объект перерисован в другом стиле.

В статье много раз отмечается, что основной фокус сделан на сохранении исходного объекта, чтобы вносить в него как можно меньше искажений при изменении стиля. Cистема построена на основе SDXL, fine-tuning не требуется, вся работа — в режиме инференса.

Обуславливание выполняется одновременно за счет нескольких механизмов:

для контента:
- картинка объекта переводится в латентное пространство и там делается инверсия в зашумленное состояние (используется модель ReNoise). С этого нового начального состояния начинается процесс денойзинга.
- картинка объекта проходит через Tile ControlNet (особый вид ControlNet, изначально предназначен для upscaling, предобучен на больших картинках, составленных из повторяющихся маленьких картинок) и подается на каждом шаге денойзинга через cross-attention.
- картинка объекта проходит через Image Adapter (IP-Adapter) и тоже подается на каждом шаге денойзинга через cross-attention.

для стиля:
- картинка стиля проходит через Style Adapter (IP-Adapter) и подается на каждом шаге денойзинга через cross-attention (в соответствии с рекомендациями InstantStyle — только в один конкретный блок U-net).
- на каждом шаге результат сравнивается с картинкой стиля через CLIP Style Similarity, и эта разность используется в качестве guidance на следующих шагах денойзинга.

🔥Project Page
💻Github
📜Paper

@gentech_lab

BY Gentech Lab






Share with your friend now:
group-telegram.com/gentech_lab/71

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so. 'Wild West' In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford.
from br


Telegram Gentech Lab
FROM American