Telegram Group & Telegram Channel
#physics
#физика

Сегодня на нашем англоязычном канале мы с гордостью представляем рекордсмена — самый большой по длительности ролик, в котором рассказываем о возникновении подъёмной силы крыла и разрешаем парадоксы и споры, связанные с этой темой.

И начинаем с дискуссии о том, за счёт чего возникает подъёмная сила — за счёт наличия угла атаки или несимметричности профиля крыла?

Затем разбираемся, как правильно объяснять возникновение подъёмной силы — на основе закона Бернулли, согласно которому за счёт разной скорости обтекания верхней и нижней сторон крыла возникает разность давлений, или же всё дело в том, что крыло отклоняет вниз налетающий на него воздух, и тогда подъёмная сила объясняется на основе законов Ньютона.

Оба эти спора разрешаются экспериментом, для которого мы построили небольшую аэродинамическую трубу.

Далее обсуждаем ещё два интересных вопроса: как возникает подъёмная сила для тонкого изогнутого профиля при нулевом угле атаки, и правда ли, что частицы воздуха, одновременно разошедшиеся по разные стороны крыла на его передней кромке, так же одновременно сойдутся на задней кромке.

Затем разбираем кажущийся парадокс: на дозвуковых скоростях крыло не только отклоняет воздушный поток вниз за задней кромкой, но и заставляет его набегать на переднюю кромку не горизонтально, а снизу вверх.

Переходим к теории крыла Жуковского, и здесь нас ожидает знаменитый парадокс Даламбера, согласно которому тело, движущееся с постоянной скоростью в невязкой несжимаемой жидкости, не испытывает сопротивления, и подъёмная сила в этой модели в точности равна нулю! Этот вывод подтверждает моделирование обтекания цилиндра, тонкого изогнутого и обычного профилей, но при этом обтекание задней кромки крыла оказывается совершенно неправдоподобным.

И мы разбираемся, как с помощью изящного математического приёма Николай Егорович Жуковский решил эту проблему, добавив постоянную циркуляцию воздушного потока вокруг крыла. А мы добавляем циркуляцию на опыте, запуская быстро вращающийся цилиндрический планер из двух одноразовых стаканчиков. И снова моделируем обтекание цилиндра и обычного профиля с помощью программы Vizimag, которая вообще-то рассчитывает здесь картину магнитного поля для сверхпроводника с текущим по нему током в однородном внешнем поле, но результаты можно переносить и в аэродинамику, потому что математические уравнения, описывающие обтекание цилиндра и магнитное поле, совершенно одинаковые!

Но можно ли наблюдать циркуляцию вокруг крыла или это математический фантом? Как она формируется? Ответы на эти и другие вопросы вы сможете увидеть в нашем, не побоюсь этого слова, блокбастере. И да пребудет с вами «Подъёмная сила крыла»!

Устраивайтесь поудобнее, смотрите наш англоязычный выпуск «Airplane wing lift» и не забывайте ставить лайки!

P.S. По этой ссылке можно найти оригинальную версию ролика и конспект к нему.

[Поддержите нас]



group-telegram.com/getaclass_channel/736
Create:
Last Update:

#physics
#физика

Сегодня на нашем англоязычном канале мы с гордостью представляем рекордсмена — самый большой по длительности ролик, в котором рассказываем о возникновении подъёмной силы крыла и разрешаем парадоксы и споры, связанные с этой темой.

И начинаем с дискуссии о том, за счёт чего возникает подъёмная сила — за счёт наличия угла атаки или несимметричности профиля крыла?

Затем разбираемся, как правильно объяснять возникновение подъёмной силы — на основе закона Бернулли, согласно которому за счёт разной скорости обтекания верхней и нижней сторон крыла возникает разность давлений, или же всё дело в том, что крыло отклоняет вниз налетающий на него воздух, и тогда подъёмная сила объясняется на основе законов Ньютона.

Оба эти спора разрешаются экспериментом, для которого мы построили небольшую аэродинамическую трубу.

Далее обсуждаем ещё два интересных вопроса: как возникает подъёмная сила для тонкого изогнутого профиля при нулевом угле атаки, и правда ли, что частицы воздуха, одновременно разошедшиеся по разные стороны крыла на его передней кромке, так же одновременно сойдутся на задней кромке.

Затем разбираем кажущийся парадокс: на дозвуковых скоростях крыло не только отклоняет воздушный поток вниз за задней кромкой, но и заставляет его набегать на переднюю кромку не горизонтально, а снизу вверх.

Переходим к теории крыла Жуковского, и здесь нас ожидает знаменитый парадокс Даламбера, согласно которому тело, движущееся с постоянной скоростью в невязкой несжимаемой жидкости, не испытывает сопротивления, и подъёмная сила в этой модели в точности равна нулю! Этот вывод подтверждает моделирование обтекания цилиндра, тонкого изогнутого и обычного профилей, но при этом обтекание задней кромки крыла оказывается совершенно неправдоподобным.

И мы разбираемся, как с помощью изящного математического приёма Николай Егорович Жуковский решил эту проблему, добавив постоянную циркуляцию воздушного потока вокруг крыла. А мы добавляем циркуляцию на опыте, запуская быстро вращающийся цилиндрический планер из двух одноразовых стаканчиков. И снова моделируем обтекание цилиндра и обычного профиля с помощью программы Vizimag, которая вообще-то рассчитывает здесь картину магнитного поля для сверхпроводника с текущим по нему током в однородном внешнем поле, но результаты можно переносить и в аэродинамику, потому что математические уравнения, описывающие обтекание цилиндра и магнитное поле, совершенно одинаковые!

Но можно ли наблюдать циркуляцию вокруг крыла или это математический фантом? Как она формируется? Ответы на эти и другие вопросы вы сможете увидеть в нашем, не побоюсь этого слова, блокбастере. И да пребудет с вами «Подъёмная сила крыла»!

Устраивайтесь поудобнее, смотрите наш англоязычный выпуск «Airplane wing lift» и не забывайте ставить лайки!

P.S. По этой ссылке можно найти оригинальную версию ролика и конспект к нему.

[Поддержите нас]

BY GetAClass - физика и здравый смысл




Share with your friend now:
group-telegram.com/getaclass_channel/736

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram users are able to send files of any type up to 2GB each and access them from any device, with no limit on cloud storage, which has made downloading files more popular on the platform. In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed. Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981.
from br


Telegram GetAClass - физика и здравый смысл
FROM American