Telegram Group & Telegram Channel
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle, Michael Carbin
CSAIL MIT

Статья: https://arxiv.org/abs/1803.03635

#CNN, #FFNN, #optimization, #pruning, #ICLR 2019

Статья немного про природу вещей. Рассматривают dense feed-forward neural networks, полносвязные и/или CNN. Известно, что методы network pruning позволяют эффективно ужать уже обученную сеть -- выкинуть заметную часть параметров (связей) без потерь качества (в ряде случаев удаётся снизить объём на 90%). Известно, кроме того, что сразу научить такую уменьшенную сеть до того же качества не выходит.

Авторы выдвигают гипотезу "лотерейного билета": любая случайно инициализированная плотная сеть, обучаемая на заданный таргет, содержит некоторую подсеть, которая, будучи обученной на тот же таргет, даст качество не хуже за то же или меньшее число итераций обучения. В целом, это утверждение имеет как минимум тривиальное подтверждение, но авторы утверждают, что это эффективная подсеть обычно существенно меньше основной. Такие эффективные подсети называют "winning tickets".

Интуиция тут такая: Начиная обучать случайно инициализированную сеть, оптимизатор просто ищет уже готовый подходящий канал внутри случайной сети, а дальше уже именно этот путь оптимизируется, а остальная сеть не очень то и нужна. В плотной сети число возможных путей от входа к выходу растёт с числом нейронов существенно надлинейно. Поэтому, чем больше сеть взять в начале, тем больше шансов сразу получить подходящий подграф.

Проводят серию экспериментов для подтверждения этой гипотезы:
1) Возьмём большую случайно инициализированную сеть Х, сохраним её копию С.
2) Обучим Х, применим к ней pruning, получим редуцированную обученную сеть У (размером 10-20% от Х).
3) Вернёмся к сохранённой копии С, редуцируем её до тех же параметров, что остались в У, но веса оставим случайными (из С) -- это будет сеть Z.
4) Обучим Z и сравним сходимость с Х. Качество должно получиться не хуже, а сходимость -- не медленнее.
5) Затем вернёмся к Z и вновь переинициализируем её случайным образом, пусть это будет сеть R. Опять сравним с X и Z. Если гипотеза верна, всё должно ухудшиться.
6) Ещё можно сравниться со случайным подграфом Х того же размера что Z.

В целом, результаты экспериментов скорее подтверждают гипотезу, по крайней мере для простых топологий. Дальше в статье идёт разбор таких экспериментов для некоторого числа разных задач, топологий и методов оптимизации.

Общие выводы:
- текущая схема обучения сетей не очень эффективна, есть куда улучшаться, например, в сторону более эффективной начальной инициализации (но не очень понятно как),
- можно попробовать определять winning tickets на ранних стадиях обучения большой сети и делать ранний pruning к ним -- это может повысить эффективность обучения на практике.



group-telegram.com/gonzo_ML/21
Create:
Last Update:

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Jonathan Frankle, Michael Carbin
CSAIL MIT

Статья: https://arxiv.org/abs/1803.03635

#CNN, #FFNN, #optimization, #pruning, #ICLR 2019

Статья немного про природу вещей. Рассматривают dense feed-forward neural networks, полносвязные и/или CNN. Известно, что методы network pruning позволяют эффективно ужать уже обученную сеть -- выкинуть заметную часть параметров (связей) без потерь качества (в ряде случаев удаётся снизить объём на 90%). Известно, кроме того, что сразу научить такую уменьшенную сеть до того же качества не выходит.

Авторы выдвигают гипотезу "лотерейного билета": любая случайно инициализированная плотная сеть, обучаемая на заданный таргет, содержит некоторую подсеть, которая, будучи обученной на тот же таргет, даст качество не хуже за то же или меньшее число итераций обучения. В целом, это утверждение имеет как минимум тривиальное подтверждение, но авторы утверждают, что это эффективная подсеть обычно существенно меньше основной. Такие эффективные подсети называют "winning tickets".

Интуиция тут такая: Начиная обучать случайно инициализированную сеть, оптимизатор просто ищет уже готовый подходящий канал внутри случайной сети, а дальше уже именно этот путь оптимизируется, а остальная сеть не очень то и нужна. В плотной сети число возможных путей от входа к выходу растёт с числом нейронов существенно надлинейно. Поэтому, чем больше сеть взять в начале, тем больше шансов сразу получить подходящий подграф.

Проводят серию экспериментов для подтверждения этой гипотезы:
1) Возьмём большую случайно инициализированную сеть Х, сохраним её копию С.
2) Обучим Х, применим к ней pruning, получим редуцированную обученную сеть У (размером 10-20% от Х).
3) Вернёмся к сохранённой копии С, редуцируем её до тех же параметров, что остались в У, но веса оставим случайными (из С) -- это будет сеть Z.
4) Обучим Z и сравним сходимость с Х. Качество должно получиться не хуже, а сходимость -- не медленнее.
5) Затем вернёмся к Z и вновь переинициализируем её случайным образом, пусть это будет сеть R. Опять сравним с X и Z. Если гипотеза верна, всё должно ухудшиться.
6) Ещё можно сравниться со случайным подграфом Х того же размера что Z.

В целом, результаты экспериментов скорее подтверждают гипотезу, по крайней мере для простых топологий. Дальше в статье идёт разбор таких экспериментов для некоторого числа разных задач, топологий и методов оптимизации.

Общие выводы:
- текущая схема обучения сетей не очень эффективна, есть куда улучшаться, например, в сторону более эффективной начальной инициализации (но не очень понятно как),
- можно попробовать определять winning tickets на ранних стадиях обучения большой сети и делать ранний pruning к ним -- это может повысить эффективность обучения на практике.

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/21

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors. Either way, Durov says that he withdrew his resignation but that he was ousted from his company anyway. Subsequently, control of the company was reportedly handed to oligarchs Alisher Usmanov and Igor Sechin, both allegedly close associates of Russian leader Vladimir Putin. "Russians are really disconnected from the reality of what happening to their country," Andrey said. "So Telegram has become essential for understanding what's going on to the Russian-speaking world." The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides.
from br


Telegram gonzo-обзоры ML статей
FROM American