Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/math_dump_of_sepa/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Математическая свалка Сепы | Telegram Webview: math_dump_of_sepa/267 -
Telegram Group & Telegram Channel
𝑙_p-комплексы Виеториса-Рипса

Мы с моим китайским другом Сяоменгом выложили препринт, в котором определяем обобщение комплекса Виеториса-Рипса, зависящее от дополнительного параметра
1≤𝑝≤∞. В этом определении используется 𝑙_p-норма. При 𝑝=∞ получается обычный комплекс Виеториса-Рипса, а при 𝑝=1 — пространство, гомологии которого — это размытые магнитудные гомологии.

Таким образом, мы объединяем эти две теории и утверждаем, что их следует изучать вместе. В частности, мы доказываем, что для компактного риманова многообразия 𝑀 при малом параметре 𝑟 этот комплекс гомотопически эквивалентен 𝑀 для любого 𝑝. Мы также приводим доказательства других свойств, которые ранее были известны для классического комплекса Виеториса-Рипса. Например, при переходе к пополнению метрического пространства гомотопический тип 𝑙_p-комплекса Виеториса-Рипса сохраняется.

Кроме того, мы доказываем свойство, которое удивило некоторых специалистов по магнитудным гомологиям. Мы показываем, что гомологии нашего 𝑙_p-комплекса Виеториса-Рипса коммутируют с фильтрующимися копределами метрических пространств. Важно отметить, что в этом доказательстве используется строгое неравенство в определении комплекса; для нестрогого неравенства это свойство не выполняется. В частности, строго размытые магнитудные гомологии коммутируют с фильтрующимися копределами, а нестрого размытые (как и обычные магнитудные) не коммутируют.

Подробности в прикреплённой далее презентации, и в архиве

https://arxiv.org/abs/2411.01857



group-telegram.com/math_dump_of_sepa/267
Create:
Last Update:

𝑙_p-комплексы Виеториса-Рипса

Мы с моим китайским другом Сяоменгом выложили препринт, в котором определяем обобщение комплекса Виеториса-Рипса, зависящее от дополнительного параметра
1≤𝑝≤∞. В этом определении используется 𝑙_p-норма. При 𝑝=∞ получается обычный комплекс Виеториса-Рипса, а при 𝑝=1 — пространство, гомологии которого — это размытые магнитудные гомологии.

Таким образом, мы объединяем эти две теории и утверждаем, что их следует изучать вместе. В частности, мы доказываем, что для компактного риманова многообразия 𝑀 при малом параметре 𝑟 этот комплекс гомотопически эквивалентен 𝑀 для любого 𝑝. Мы также приводим доказательства других свойств, которые ранее были известны для классического комплекса Виеториса-Рипса. Например, при переходе к пополнению метрического пространства гомотопический тип 𝑙_p-комплекса Виеториса-Рипса сохраняется.

Кроме того, мы доказываем свойство, которое удивило некоторых специалистов по магнитудным гомологиям. Мы показываем, что гомологии нашего 𝑙_p-комплекса Виеториса-Рипса коммутируют с фильтрующимися копределами метрических пространств. Важно отметить, что в этом доказательстве используется строгое неравенство в определении комплекса; для нестрогого неравенства это свойство не выполняется. В частности, строго размытые магнитудные гомологии коммутируют с фильтрующимися копределами, а нестрого размытые (как и обычные магнитудные) не коммутируют.

Подробности в прикреплённой далее презентации, и в архиве

https://arxiv.org/abs/2411.01857

BY Математическая свалка Сепы




Share with your friend now:
group-telegram.com/math_dump_of_sepa/267

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. Emerson Brooking, a disinformation expert at the Atlantic Council's Digital Forensic Research Lab, said: "Back in the Wild West period of content moderation, like 2014 or 2015, maybe they could have gotten away with it, but it stands in marked contrast with how other companies run themselves today." Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government.
from br


Telegram Математическая свалка Сепы
FROM American