Telegram Group & Telegram Channel
Необычные значения в данных
Цикл постов о подготовке данных. Пост 1

Этой заметкой мы хотели бы начать серию постов, посвященную подготовке данных.

Качество ML-моделей определяется качеством данных, на которых они обучаются. В этой серии постов мы будем говорить о табличных данных. Хотя в целом выводы и идеи можно адаптировать не только к табличкам, но и к текстам, звукам, картинкам и последовательностям событий (логам транзакций).

Что мы имеем в виду под необычными данными

Данные могут содержать примеры, нехарактерные для исследуемого распределения: выбросы или аномалии. Выявление и последующее удаление/трансформация таких точек из набора данных позволяет повысить качество работы модели.

Чаще всего термины выброс (outlier) и аномалия (anomaly) используют взаимозаменяемо (Aggarwal, 2016). А некоторые авторы - например, в лекциях MIT 2023 г. по Data-Centric AI - разделяют задачу выявления выбросов (поиск нетипичных точек в уже имеющихся данных) и детекции аномалий (выявление нетипичных точек в новых данных). Для практики также важна детекция новизны (novelty detection) [3] [4] - выявление нового класса примеров, не представленных в обучающей выборке. О последней хорошо рассказывают в своих лекциях А. Дьяконов и Stefan Buuren.

Откуда они появляются

- Ошибки. Ошибки сенсора, отказы оборудования, ошибки фиксации данных.
- Точки из другого распределения. Например, при анализе стоимости торговой недвижимости всплыли нетипично дорогие сделки с площадью 1 кв. м. - аренда места под банкоматы. Ценообразование в этом сегменте другое, из набора данных для анализа торговой недвижимости их стоит исключить.
- Редкие случаи из интересующего нас распределения - необычные результаты, которые не похожи на остальные данные, но их нельзя игнорировать. Например, на медосмотре нам может попасться пациент с очень редким пульсом, но с совершенно здоровым сердцем.

Что с ними делать

Чаще всего необычные данные удаляют. Так поступают, если выбросы не несут важной информации. Но иногда необычные данные - просто редкие примеры интересующего нас распределения. Особенно выгодные клиенты, сложные редкие ситуации, или случаи использования, пропущенные при постановке задачи. В таких случаях можно:

- Добавить дополнительный признак - “редкий случай”
- Ограничивать значение (обрезать аномально высокие значения, увеличить аномально низкие и т.д.)
- Восстановить наиболее вероятное истинное значение (data imputation)

Удаление необычных данных решает проблему с обучением модели, но никак не помогает, когда такие необычные данные приходят на этапе инференса (предсказания). И тут ограничение значения или импутация позволяет модели выдавать более-менее осмысленный результат.

В следующих постах цикла мы поговорим о том, как выявлять и анализировать выбросы и закончим формулировкой фреймворка по работе с выбросами - на основе примеров из практики.

Ваш @Reliable ML



group-telegram.com/reliable_ml/134
Create:
Last Update:

Необычные значения в данных
Цикл постов о подготовке данных. Пост 1

Этой заметкой мы хотели бы начать серию постов, посвященную подготовке данных.

Качество ML-моделей определяется качеством данных, на которых они обучаются. В этой серии постов мы будем говорить о табличных данных. Хотя в целом выводы и идеи можно адаптировать не только к табличкам, но и к текстам, звукам, картинкам и последовательностям событий (логам транзакций).

Что мы имеем в виду под необычными данными

Данные могут содержать примеры, нехарактерные для исследуемого распределения: выбросы или аномалии. Выявление и последующее удаление/трансформация таких точек из набора данных позволяет повысить качество работы модели.

Чаще всего термины выброс (outlier) и аномалия (anomaly) используют взаимозаменяемо (Aggarwal, 2016). А некоторые авторы - например, в лекциях MIT 2023 г. по Data-Centric AI - разделяют задачу выявления выбросов (поиск нетипичных точек в уже имеющихся данных) и детекции аномалий (выявление нетипичных точек в новых данных). Для практики также важна детекция новизны (novelty detection) [3] [4] - выявление нового класса примеров, не представленных в обучающей выборке. О последней хорошо рассказывают в своих лекциях А. Дьяконов и Stefan Buuren.

Откуда они появляются

- Ошибки. Ошибки сенсора, отказы оборудования, ошибки фиксации данных.
- Точки из другого распределения. Например, при анализе стоимости торговой недвижимости всплыли нетипично дорогие сделки с площадью 1 кв. м. - аренда места под банкоматы. Ценообразование в этом сегменте другое, из набора данных для анализа торговой недвижимости их стоит исключить.
- Редкие случаи из интересующего нас распределения - необычные результаты, которые не похожи на остальные данные, но их нельзя игнорировать. Например, на медосмотре нам может попасться пациент с очень редким пульсом, но с совершенно здоровым сердцем.

Что с ними делать

Чаще всего необычные данные удаляют. Так поступают, если выбросы не несут важной информации. Но иногда необычные данные - просто редкие примеры интересующего нас распределения. Особенно выгодные клиенты, сложные редкие ситуации, или случаи использования, пропущенные при постановке задачи. В таких случаях можно:

- Добавить дополнительный признак - “редкий случай”
- Ограничивать значение (обрезать аномально высокие значения, увеличить аномально низкие и т.д.)
- Восстановить наиболее вероятное истинное значение (data imputation)

Удаление необычных данных решает проблему с обучением модели, но никак не помогает, когда такие необычные данные приходят на этапе инференса (предсказания). И тут ограничение значения или импутация позволяет модели выдавать более-менее осмысленный результат.

В следующих постах цикла мы поговорим о том, как выявлять и анализировать выбросы и закончим формулировкой фреймворка по работе с выбросами - на основе примеров из практики.

Ваш @Reliable ML

BY Reliable ML


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/reliable_ml/134

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981. Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications.
from br


Telegram Reliable ML
FROM American