Telegram Group & Telegram Channel
🌸MLGym – открытый фреймворк и бенчмарк для Агентов в автоматизации ML-задач🌸
#nlp #про_nlp #nlp_papers

Сегодня, под конец этой насыщенной недели, мы с коллегами выпускаем новую работу "MLGym: A New Framework and Benchmark for Advancing AI Research Agents".

🟣TL;DR
MLGym – это фреймворк для оценки и развития LLM-агентов.
В нем пока 15 различных ML задач, включая хорошо и не очень определенные: задачи на NLP, CV, RL, теорию игр.
Агенты должны продемонстрировать свою способность понять задачу, запустить бейзлайн, оцени его, и начать итерировать эксперименты и улучшать результат, находясь при этом в заданной среде. В среде есть набор инструментов, которые можно использовать: поиск по файловой системе, поиск по файлам, модуль памяти, просмотр и изменение файлов, и собственно действия запуска скрипта оценки и сабмита решения.
Каждая задача содержит датасет, метрику, бейзлайн, а также свою собственную среду, где есть контролируемые ограничения на вычислительный бюджет и таймауты.

Мы предлагаем иерархическую структуру из 6 уровней для оценки степени автономии и научного вклада агентов:
Уровень 0: воспроизведение – аккуратно повторить чужие эксперименты без ошибок
Уровень 1: Итеративное улучшение бейзлайна – применение лучших практик, перебор гипертапаметров
Уровень 2: Достижение SOTA через итерации от бейзлайна – решение лучше тех, что смогли найти люди
Уровень 3: Новый научный вклад – можно быть принятым на условный NeurIPS
Уровень 4: Научное новаторство, фундаментальный научный вклад – можно получить "лучшую статью" на том же NeurIPS
Уровень 5: Долгосрочная исследовательская программа – test of time awards, научная революция, премия Тьюринга.

🟣Что мы выяснили?
Текущие ИИ системы находятся почти поголовно на уровне 1.

Удобно оценивать все системы относительно дельты, которую они смогли достичь, опираясь на бейзлайн, за заданное количество итераций (за первые 5 шагов у системы Х получили +15% точности, а у системы Y +20%). Если оценивать LLM-агенты так, то увидим, что O1-preview вырывается вперед практически на всех задачах. GPT-4o и LLama 3.1 405B примерно на одном уровне, Claude и Gemini делят обычно 2 и 3 место. Ну а если помимо дельты оценивать еще и стоимость инференса модели, но картина меняется, и лучше по соотношению оказывается Gemini с большим отрывом.  

Достаточно интересно посмотреть распределение действий агентов и их ошибок:
— большинство LLM-агентов делают ошибки и из-за этого не доходят до сабмита, тогда как O1 и Gemini гораздо чаще просто не доделывают сабмит до конца.
— все агенты большую часть действий тратят на изменение файлов: редактирование скриптов обучения, а также чтение файлов, запуск обучения и валидацию — соотношение действий примерно у всех одинаковое, хотя некоторым система действий требуется меньше.
— почти все агенты очень мало используют поиск, хотя могли бы.
— минимальное число итераций до первого сабмита — примерно 5. Все системы начинают с чтения файлов, затем запускают валидацию, и дальше планомерно итерируются, изменяя скрипты и запуская обучение.

🟣Что еще есть полезного?
— Классный Web UI визуализатор агентных логов на streamlit
— Есть набор полезных функций и tools, полностью совместимый с SWE-Agent.
— Есть модуль памяти, модуль поиска научной литературы, и еще много разных ништяков, которые можно использовать отдельно от бенчмарка, просто развивая своего агента (свой агент? Это же неодушевленное...)
— Есть большой обзор литературы, охватывающий почти все последние работы в области агентов для SWE, ML, науки, который угадайте кто писал.

Линейку задач можно легко расширять — поэтому мы будем рады идеям и контрибьюшенам, а также любой активности в репозитории.

🟣Arxiv: https://arxiv.org/abs/2502.14499
🟣Github: https://github.com/facebookresearch/MLGym
🟣Лицензия: CC-BY-NC 4.0
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/rybolos_channel/1400
Create:
Last Update:

🌸MLGym – открытый фреймворк и бенчмарк для Агентов в автоматизации ML-задач🌸
#nlp #про_nlp #nlp_papers

Сегодня, под конец этой насыщенной недели, мы с коллегами выпускаем новую работу "MLGym: A New Framework and Benchmark for Advancing AI Research Agents".

🟣TL;DR
MLGym – это фреймворк для оценки и развития LLM-агентов.
В нем пока 15 различных ML задач, включая хорошо и не очень определенные: задачи на NLP, CV, RL, теорию игр.
Агенты должны продемонстрировать свою способность понять задачу, запустить бейзлайн, оцени его, и начать итерировать эксперименты и улучшать результат, находясь при этом в заданной среде. В среде есть набор инструментов, которые можно использовать: поиск по файловой системе, поиск по файлам, модуль памяти, просмотр и изменение файлов, и собственно действия запуска скрипта оценки и сабмита решения.
Каждая задача содержит датасет, метрику, бейзлайн, а также свою собственную среду, где есть контролируемые ограничения на вычислительный бюджет и таймауты.

Мы предлагаем иерархическую структуру из 6 уровней для оценки степени автономии и научного вклада агентов:
Уровень 0: воспроизведение – аккуратно повторить чужие эксперименты без ошибок
Уровень 1: Итеративное улучшение бейзлайна – применение лучших практик, перебор гипертапаметров
Уровень 2: Достижение SOTA через итерации от бейзлайна – решение лучше тех, что смогли найти люди
Уровень 3: Новый научный вклад – можно быть принятым на условный NeurIPS
Уровень 4: Научное новаторство, фундаментальный научный вклад – можно получить "лучшую статью" на том же NeurIPS
Уровень 5: Долгосрочная исследовательская программа – test of time awards, научная революция, премия Тьюринга.

🟣Что мы выяснили?
Текущие ИИ системы находятся почти поголовно на уровне 1.

Удобно оценивать все системы относительно дельты, которую они смогли достичь, опираясь на бейзлайн, за заданное количество итераций (за первые 5 шагов у системы Х получили +15% точности, а у системы Y +20%). Если оценивать LLM-агенты так, то увидим, что O1-preview вырывается вперед практически на всех задачах. GPT-4o и LLama 3.1 405B примерно на одном уровне, Claude и Gemini делят обычно 2 и 3 место. Ну а если помимо дельты оценивать еще и стоимость инференса модели, но картина меняется, и лучше по соотношению оказывается Gemini с большим отрывом.  

Достаточно интересно посмотреть распределение действий агентов и их ошибок:
— большинство LLM-агентов делают ошибки и из-за этого не доходят до сабмита, тогда как O1 и Gemini гораздо чаще просто не доделывают сабмит до конца.
— все агенты большую часть действий тратят на изменение файлов: редактирование скриптов обучения, а также чтение файлов, запуск обучения и валидацию — соотношение действий примерно у всех одинаковое, хотя некоторым система действий требуется меньше.
— почти все агенты очень мало используют поиск, хотя могли бы.
— минимальное число итераций до первого сабмита — примерно 5. Все системы начинают с чтения файлов, затем запускают валидацию, и дальше планомерно итерируются, изменяя скрипты и запуская обучение.

🟣Что еще есть полезного?
— Классный Web UI визуализатор агентных логов на streamlit
— Есть набор полезных функций и tools, полностью совместимый с SWE-Agent.
— Есть модуль памяти, модуль поиска научной литературы, и еще много разных ништяков, которые можно использовать отдельно от бенчмарка, просто развивая своего агента (свой агент? Это же неодушевленное...)
— Есть большой обзор литературы, охватывающий почти все последние работы в области агентов для SWE, ML, науки, который угадайте кто писал.

Линейку задач можно легко расширять — поэтому мы будем рады идеям и контрибьюшенам, а также любой активности в репозитории.

🟣Arxiv: https://arxiv.org/abs/2502.14499
🟣Github: https://github.com/facebookresearch/MLGym
🟣Лицензия: CC-BY-NC 4.0

BY Kali Novskaya




Share with your friend now:
group-telegram.com/rybolos_channel/1400

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. Founder Pavel Durov says tech is meant to set you free The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. 'Wild West' On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events."
from br


Telegram Kali Novskaya
FROM American