Telegram Group & Telegram Channel
Делаем t-тесты или u-тесты в R сразу для многих колонок с помощью `tidyverse`-подхода

Бывают ситуации, когда измерили много количественных переменных для двух групп, например контрольной и с заболеванием, я встречала такие данные у медиков или как результаты масс-спектрометрии. Планируется сравнить все эти количественные переменные тестом Стьюдента или Манна-Уитни, но вручную прописывать 3 или больше раз t-тест кажется не очень хорошей идеей. Что можно сделать? Будем использовать следующий подход: сначала развернем таблицу в длинный формат, соберем в списки значения по каждой группе и количественной переменной, затем таблицу снова превратим в широкий формат, но уже в виде
переменная1 [список значений контрольной группы] [список значений экспериментальной группы]

И уже к этой таблице применим нужный тест один раз и получим список p-value для каждой количественной переменной! Прикрепляю пример кода, постаралась прокомментировать основные моменты, данные сгенерированы из стандартного нормального распределения с заданием seed, так что этот код должен воспроизвестись:

 r
library(dplyr)
library(tidyr)
set.seed(2)
df <- data.frame(lapply(rep(100,15), rnorm),
group = rep(c('control', 'treatment'), each = 50)) # генерируем данные
colnames(df)[1:15] <- paste0('marker', 1:15) # меняем имена колонок на более понятные
df %>%
select(where(is.numeric), group) %>% # это на случай, если в исходном датафрейме не только числовые переменные
pivot_longer(cols = -group, names_to = 'variable') %>% # преобразуем датафрейм в long-формат
group_by(group, variable) %>% # группируем по типу обработки и типу переменных
summarise(value = list(value)) %>% # собираем в списки
pivot_wider(id_cols = c(variable), names_from = group) %>% # разворачиваем обратно
group_by(variable) %>% # группируем для проведения стат теста
# запускаем тест Манна-Уитни, сохраняем u-значение и p-value
mutate(p_value = wilcox.test(unlist(control), unlist(treatment))$p.value,
u_value = wilcox.test(unlist(control), unlist(treatment))$statistic)
#> `summarise()` has grouped output by 'group'. You can override using the
#> `.groups` argument.
#> # A tibble: 15 × 5
#> # Groups: variable [15]
#> variable control treatment p_value u_value
#> <chr> <list> <list> <dbl> <dbl>
#> 1 marker1 <dbl [50]> <dbl [50]> 0.293 1403
#> 2 marker10 <dbl [50]> <dbl [50]> 0.0403 1548
#> 3 marker11 <dbl [50]> <dbl [50]> 0.269 1411
#> 4 marker12 <dbl [50]> <dbl [50]> 0.997 1249
#> 5 marker13 <dbl [50]> <dbl [50]> 0.323 1106
#> 6 marker14 <dbl [50]> <dbl [50]> 0.560 1335
#> 7 marker15 <dbl [50]> <dbl [50]> 0.667 1313
#> 8 marker2 <dbl [50]> <dbl [50]> 0.117 1478
#> 9 marker3 <dbl [50]> <dbl [50]> 0.931 1263
#> 10 marker4 <dbl [50]> <dbl [50]> 0.866 1225
#> 11 marker5 <dbl [50]> <dbl [50]> 0.791 1211
#> 12 marker6 <dbl [50]> <dbl [50]> 0.986 1247
#> 13 marker7 <dbl [50]> <dbl [50]> 0.920 1235
#> 14 marker8 <dbl [50]> <dbl [50]> 0.0169 1597
#> 15 marker9 <dbl [50]> <dbl [50]> 0.707 1195

Если понадобится сделать не тест Манна-Уитни, как в примере, а t-test, то надо просто поменять в последней команде wilcox.test() на t.test().



group-telegram.com/stats_for_science/67
Create:
Last Update:

Делаем t-тесты или u-тесты в R сразу для многих колонок с помощью `tidyverse`-подхода

Бывают ситуации, когда измерили много количественных переменных для двух групп, например контрольной и с заболеванием, я встречала такие данные у медиков или как результаты масс-спектрометрии. Планируется сравнить все эти количественные переменные тестом Стьюдента или Манна-Уитни, но вручную прописывать 3 или больше раз t-тест кажется не очень хорошей идеей. Что можно сделать? Будем использовать следующий подход: сначала развернем таблицу в длинный формат, соберем в списки значения по каждой группе и количественной переменной, затем таблицу снова превратим в широкий формат, но уже в виде
переменная1 [список значений контрольной группы] [список значений экспериментальной группы]

И уже к этой таблице применим нужный тест один раз и получим список p-value для каждой количественной переменной! Прикрепляю пример кода, постаралась прокомментировать основные моменты, данные сгенерированы из стандартного нормального распределения с заданием seed, так что этот код должен воспроизвестись:

 r
library(dplyr)
library(tidyr)
set.seed(2)
df <- data.frame(lapply(rep(100,15), rnorm),
group = rep(c('control', 'treatment'), each = 50)) # генерируем данные
colnames(df)[1:15] <- paste0('marker', 1:15) # меняем имена колонок на более понятные
df %>%
select(where(is.numeric), group) %>% # это на случай, если в исходном датафрейме не только числовые переменные
pivot_longer(cols = -group, names_to = 'variable') %>% # преобразуем датафрейм в long-формат
group_by(group, variable) %>% # группируем по типу обработки и типу переменных
summarise(value = list(value)) %>% # собираем в списки
pivot_wider(id_cols = c(variable), names_from = group) %>% # разворачиваем обратно
group_by(variable) %>% # группируем для проведения стат теста
# запускаем тест Манна-Уитни, сохраняем u-значение и p-value
mutate(p_value = wilcox.test(unlist(control), unlist(treatment))$p.value,
u_value = wilcox.test(unlist(control), unlist(treatment))$statistic)
#> `summarise()` has grouped output by 'group'. You can override using the
#> `.groups` argument.
#> # A tibble: 15 × 5
#> # Groups: variable [15]
#> variable control treatment p_value u_value
#> <chr> <list> <list> <dbl> <dbl>
#> 1 marker1 <dbl [50]> <dbl [50]> 0.293 1403
#> 2 marker10 <dbl [50]> <dbl [50]> 0.0403 1548
#> 3 marker11 <dbl [50]> <dbl [50]> 0.269 1411
#> 4 marker12 <dbl [50]> <dbl [50]> 0.997 1249
#> 5 marker13 <dbl [50]> <dbl [50]> 0.323 1106
#> 6 marker14 <dbl [50]> <dbl [50]> 0.560 1335
#> 7 marker15 <dbl [50]> <dbl [50]> 0.667 1313
#> 8 marker2 <dbl [50]> <dbl [50]> 0.117 1478
#> 9 marker3 <dbl [50]> <dbl [50]> 0.931 1263
#> 10 marker4 <dbl [50]> <dbl [50]> 0.866 1225
#> 11 marker5 <dbl [50]> <dbl [50]> 0.791 1211
#> 12 marker6 <dbl [50]> <dbl [50]> 0.986 1247
#> 13 marker7 <dbl [50]> <dbl [50]> 0.920 1235
#> 14 marker8 <dbl [50]> <dbl [50]> 0.0169 1597
#> 15 marker9 <dbl [50]> <dbl [50]> 0.707 1195

Если понадобится сделать не тест Манна-Уитни, как в примере, а t-test, то надо просто поменять в последней команде wilcox.test() на t.test().

BY Статистика и R в науке и аналитике


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/stats_for_science/67

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment. Telegram was founded in 2013 by two Russian brothers, Nikolai and Pavel Durov. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. Ukrainian forces have since put up a strong resistance to the Russian troops amid the war that has left hundreds of Ukrainian civilians, including children, dead, according to the United Nations. Ukrainian and international officials have accused Russia of targeting civilian populations with shelling and bombardments. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War."
from br


Telegram Статистика и R в науке и аналитике
FROM American