Доказательства всегда в некотором смысле "конструктивны": они дают "алгоритм", просто не все шаги можно быстро проделать на практике. (шаги, связанные с аксиомой выбора, например). Интересно расписать такой план действий. Вот как распознать экзотическую сферу? (в соответствии с вычислением количества гладких структур на сферах, по Керверу-Милнору)
Входные данные: гладкое n-мерное многообразие Σ, гомеоморфное стандартной сфере. Диффеоморфно ли оно стандартной сфере?
Шаг 1: вкладываем Σ в R^{N+n} при N > n.
Шаг 2: строим нормальное оснащение на Σ, то есть N линейно независимых векторных полей на Σ, перпендикулярных поверхности [Нетривиальный факт: такое оснащение существует. Его можно строить через теорию препятствий; препятствие ровно одно, и оно всегда оказывается равно нулю.] Мы получили оснащённое подмногообразие коразмерности N.
Шаг 3: проверяем, существует ли оснащённый кобордизм между подмногообразием Σ (с нашим нормальным оснащением) и стандартной сферой S^n, стандартно вложенной в R^{N+n} (возможно, с нетривиальным нормальным оснащением). [На другом языке: по Понтрягину-Тому, нашему нормально оснащённому подмногообразию соответствует отображение S^{N+n} -> S^N, то есть элемент в n-ой стабильной гомотопической группе сфер. Этот элемент либо лежит в образе J-гомоморфизма (т.е. кратен некоторому явному элементу, связанному с ортогональной группой), либо не лежит. Ещё одна точка зрения: перебираем всевозможные оснащения на Σ и проверяем, будет ли хоть одно из них оснащённо кобордантно нулю].
Если такого кобордизма нет — успех, наша сфера экзотическая. Пусть такой кобордизм есть. Это значит: можно взять оснащённую связную сумму Σ и сферы так, что получится оснащённое многообразие, кобордантное нулю. Итог: получили оснащённое многообразие P, такое что ∂P=Σ. [Оснащение на Σ теперь не такое, как раньше, но оно нас больше не интересует.]
Шаг 4: несколько вариантов в зависимости от n. а) n чётно. Тогда сфера стандартная. б) n=4k+1, но не 13,29,61,125. Тогда сфера стандартная. в) n=13,29,61 или 125. Тогда надо посчитать инвариант Кервера многообразия P (то есть Арф-инвариант квадратичной формы на H^{2k+1}(P;Z/2), которая возникает из умножения в когомологиях). Если Арф-инвариант нулевой — сфера стандартная, иначе экзотическая. [в пункте б) тоже надо бы посчитать инвариант Кервера. Но, если верить Хиллу—Хопкинсу—Рэвенелу, он равен нулю.] г) n=4k-1. Тогда надо посчитать сигнатуру многообразия P (то есть сигнатуру квадратичной формы на H^{2k}(P;Q), которая возникает из умножения в когомологиях). Если сигнатура делится на некоторое явно выписываемое число, кратное числителю n-ого числа Бернулли — сфера стандартная, иначе экзотическая.
...интересно, можно ли как-нибудь переставить шаги (сначала разобраться с сигнатурой/арф-инвариантом, а потом уже решать гомотопическую задачу).
P. S. Кстати, Милнор строил первые экзотические сферы в размерности n=7. Там J-гомоморфизм сюръективен, поэтому Шаг 3 можно "пропустить": кобордизм всегда существует. (На самом деле пропускать нельзя: на Шаге 4 надо считать сигнатуру заклеивающей плёнки, построенной на Шаге 3.) Сферы Милнора — это тотальные пространства расслоений S^3 -> Σ -> S^4. С шагом 3 у Милнора не было проблем, многообразия P — это тотальные пространства ассоциированных расслоений D^4 -> P -> S^4.
Доказательства всегда в некотором смысле "конструктивны": они дают "алгоритм", просто не все шаги можно быстро проделать на практике. (шаги, связанные с аксиомой выбора, например). Интересно расписать такой план действий. Вот как распознать экзотическую сферу? (в соответствии с вычислением количества гладких структур на сферах, по Керверу-Милнору)
Входные данные: гладкое n-мерное многообразие Σ, гомеоморфное стандартной сфере. Диффеоморфно ли оно стандартной сфере?
Шаг 1: вкладываем Σ в R^{N+n} при N > n.
Шаг 2: строим нормальное оснащение на Σ, то есть N линейно независимых векторных полей на Σ, перпендикулярных поверхности [Нетривиальный факт: такое оснащение существует. Его можно строить через теорию препятствий; препятствие ровно одно, и оно всегда оказывается равно нулю.] Мы получили оснащённое подмногообразие коразмерности N.
Шаг 3: проверяем, существует ли оснащённый кобордизм между подмногообразием Σ (с нашим нормальным оснащением) и стандартной сферой S^n, стандартно вложенной в R^{N+n} (возможно, с нетривиальным нормальным оснащением). [На другом языке: по Понтрягину-Тому, нашему нормально оснащённому подмногообразию соответствует отображение S^{N+n} -> S^N, то есть элемент в n-ой стабильной гомотопической группе сфер. Этот элемент либо лежит в образе J-гомоморфизма (т.е. кратен некоторому явному элементу, связанному с ортогональной группой), либо не лежит. Ещё одна точка зрения: перебираем всевозможные оснащения на Σ и проверяем, будет ли хоть одно из них оснащённо кобордантно нулю].
Если такого кобордизма нет — успех, наша сфера экзотическая. Пусть такой кобордизм есть. Это значит: можно взять оснащённую связную сумму Σ и сферы так, что получится оснащённое многообразие, кобордантное нулю. Итог: получили оснащённое многообразие P, такое что ∂P=Σ. [Оснащение на Σ теперь не такое, как раньше, но оно нас больше не интересует.]
Шаг 4: несколько вариантов в зависимости от n. а) n чётно. Тогда сфера стандартная. б) n=4k+1, но не 13,29,61,125. Тогда сфера стандартная. в) n=13,29,61 или 125. Тогда надо посчитать инвариант Кервера многообразия P (то есть Арф-инвариант квадратичной формы на H^{2k+1}(P;Z/2), которая возникает из умножения в когомологиях). Если Арф-инвариант нулевой — сфера стандартная, иначе экзотическая. [в пункте б) тоже надо бы посчитать инвариант Кервера. Но, если верить Хиллу—Хопкинсу—Рэвенелу, он равен нулю.] г) n=4k-1. Тогда надо посчитать сигнатуру многообразия P (то есть сигнатуру квадратичной формы на H^{2k}(P;Q), которая возникает из умножения в когомологиях). Если сигнатура делится на некоторое явно выписываемое число, кратное числителю n-ого числа Бернулли — сфера стандартная, иначе экзотическая.
...интересно, можно ли как-нибудь переставить шаги (сначала разобраться с сигнатурой/арф-инвариантом, а потом уже решать гомотопическую задачу).
P. S. Кстати, Милнор строил первые экзотические сферы в размерности n=7. Там J-гомоморфизм сюръективен, поэтому Шаг 3 можно "пропустить": кобордизм всегда существует. (На самом деле пропускать нельзя: на Шаге 4 надо считать сигнатуру заклеивающей плёнки, построенной на Шаге 3.) Сферы Милнора — это тотальные пространства расслоений S^3 -> Σ -> S^4. С шагом 3 у Милнора не было проблем, многообразия P — это тотальные пространства ассоциированных расслоений D^4 -> P -> S^4.
BY сладко стянул
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion. Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders.
from br