Telegram Group & Telegram Channel
#ля_ты_крыса

- Сколько будет 2х2?
- А сколько надо?


Привет, коллега!

Я очень люблю статью про 9 кругов научного ада, кто хочет может ознакомиться с русским переводом здесь. Согласно этой работе самым страшным научным грехом считается фабрикация данных. Об этом сегодня и поговорим.

Строго говоря, есть разница между фабрикацией и фальсификацией данных: в первом случае данные полностью выдуманы 🌈, а во втором существующие данные искажены. При фабрикации эксперимент придумывается, но никогда не проводится, а его данные генерируется где-нибудь в экселе. При фальсификации эксперимент всё таки проводится, но все "неудобные" результаты удаляются. Также некоторые перебирают статистические критерии до появление нужного результата. Например, t-тест является достаточно мощным и часто показывает заветное p<0.05, но не подходит для дискретных данных.

Как же распознать фальсификацию или фабрикацию данных?

🔵 Идеальные данные с очень малым разбросом. Реальность бессердечна 💔 и это нормально, когда в исследованиях данные выглядят не слишком хорошо. В целом, если у авторов абсолютно везде огромная значимость различий, то это подозрительно. Также можно увидеть повторяющиеся паттерны, например, в диаграммах рассеивания, это явный признак копипасты. Помимо неправомерного удаления данных, иногда исследователи используют стандартную ошибку среднего (SEM) в качестве мер разброса, что позволяет сделать "усы" меньше. Это не есть фальсификация, но вводит читателя в заблуждение и в целом некорректно с точки зрения описательной статистики. В будущем я обязательно напишу почему.

🔵Непрозрачность исследования. Если методика и анализ в статье написаны не очень подробно и вызывают сомнения - это повод задуматься и заподозрить неладное 🤔. Но если и на запрос (особенно рецензента) авторы не спешат делиться информацией, то что-то с этими данными скорее всего не так. Кроме случаев коммерческой или гос тайны, но это прописывается отдельно.

🔵Махинации с изображениями. Некоторые авторы подкручивают настройки изображений, например, яркость-контраст, чтобы выдать желаемое за действительное. Также можно встретить вырезанные фрагменты, которые "склеивают" друг с другом. Например, так часто делают для изображений вестерн-блота. Мне несколько раз на рецензию приходили статьи, где за результат регенерации хряща выдавали интактную область, не затронутую дефектом.

🔵Невоспроизводимость результатов. Согласно исследованию Nature 70% исследователей не могут воспроизвести результаты чужих исследований, а 60% своих же. Собственно, я лично столкнулась с тем, что взяв вещества, которые по литературе должны были стимулировать образование хряща из клеток, мы не получили хоть сколько-нибудь вменяемого результата. Вообще, у невоспроизводимости могут быть и иные причины помимо фальсификации и фабрикации и если тема интересна - ставь на этот пост 👀.

🔵Анализ предыдущих работ. Если возникают сомнения в качестве данных, то можно покопаться в предыдущих работах авторов. Вполне возможно, что там встретятся знакомые графики или изображения.

Хочу также порекомендовать блог RetractionWatch в котором можно увидеть примеры отозванных статей, в том числе из-за фабрикации и фальсификации. Насмотренность - наше всё. В России одно время действовала комиссия по противодействию фальсификации научных исследований и даже обнаруживала не совсем честные работы кандидатов в академики РАН. Мнения о работе этой комиссии противоречивы (а я своё не сформировала ввиду малого количества информации) и сейчас она не функционирует.

🐈‍⬛ Ну и в заключении ещё раз повторю, что фальсификация, фабрикация или плагиат - это, на мой взгляд, самые худшие нарушения научной этики. Я знаю примеры (и в РФ, и в Европе), когда студентов и аспирантов гнобили за то, что они не получали те данные, которые хотел руководитель, и заставляли переделывать одно и то же много много раз 👊 В таких случаях велик соблазн выдать желаемое за действительное. Если ты узнаёшь в этом себя, то это знак: беги из этого места как можно скорее. Ещё никто из моих знакомых, кто так поступил, не пожалел.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ad_research/93
Create:
Last Update:

#ля_ты_крыса

- Сколько будет 2х2?
- А сколько надо?


Привет, коллега!

Я очень люблю статью про 9 кругов научного ада, кто хочет может ознакомиться с русским переводом здесь. Согласно этой работе самым страшным научным грехом считается фабрикация данных. Об этом сегодня и поговорим.

Строго говоря, есть разница между фабрикацией и фальсификацией данных: в первом случае данные полностью выдуманы 🌈, а во втором существующие данные искажены. При фабрикации эксперимент придумывается, но никогда не проводится, а его данные генерируется где-нибудь в экселе. При фальсификации эксперимент всё таки проводится, но все "неудобные" результаты удаляются. Также некоторые перебирают статистические критерии до появление нужного результата. Например, t-тест является достаточно мощным и часто показывает заветное p<0.05, но не подходит для дискретных данных.

Как же распознать фальсификацию или фабрикацию данных?

🔵 Идеальные данные с очень малым разбросом. Реальность бессердечна 💔 и это нормально, когда в исследованиях данные выглядят не слишком хорошо. В целом, если у авторов абсолютно везде огромная значимость различий, то это подозрительно. Также можно увидеть повторяющиеся паттерны, например, в диаграммах рассеивания, это явный признак копипасты. Помимо неправомерного удаления данных, иногда исследователи используют стандартную ошибку среднего (SEM) в качестве мер разброса, что позволяет сделать "усы" меньше. Это не есть фальсификация, но вводит читателя в заблуждение и в целом некорректно с точки зрения описательной статистики. В будущем я обязательно напишу почему.

🔵Непрозрачность исследования. Если методика и анализ в статье написаны не очень подробно и вызывают сомнения - это повод задуматься и заподозрить неладное 🤔. Но если и на запрос (особенно рецензента) авторы не спешат делиться информацией, то что-то с этими данными скорее всего не так. Кроме случаев коммерческой или гос тайны, но это прописывается отдельно.

🔵Махинации с изображениями. Некоторые авторы подкручивают настройки изображений, например, яркость-контраст, чтобы выдать желаемое за действительное. Также можно встретить вырезанные фрагменты, которые "склеивают" друг с другом. Например, так часто делают для изображений вестерн-блота. Мне несколько раз на рецензию приходили статьи, где за результат регенерации хряща выдавали интактную область, не затронутую дефектом.

🔵Невоспроизводимость результатов. Согласно исследованию Nature 70% исследователей не могут воспроизвести результаты чужих исследований, а 60% своих же. Собственно, я лично столкнулась с тем, что взяв вещества, которые по литературе должны были стимулировать образование хряща из клеток, мы не получили хоть сколько-нибудь вменяемого результата. Вообще, у невоспроизводимости могут быть и иные причины помимо фальсификации и фабрикации и если тема интересна - ставь на этот пост 👀.

🔵Анализ предыдущих работ. Если возникают сомнения в качестве данных, то можно покопаться в предыдущих работах авторов. Вполне возможно, что там встретятся знакомые графики или изображения.

Хочу также порекомендовать блог RetractionWatch в котором можно увидеть примеры отозванных статей, в том числе из-за фабрикации и фальсификации. Насмотренность - наше всё. В России одно время действовала комиссия по противодействию фальсификации научных исследований и даже обнаруживала не совсем честные работы кандидатов в академики РАН. Мнения о работе этой комиссии противоречивы (а я своё не сформировала ввиду малого количества информации) и сейчас она не функционирует.

🐈‍⬛ Ну и в заключении ещё раз повторю, что фальсификация, фабрикация или плагиат - это, на мой взгляд, самые худшие нарушения научной этики. Я знаю примеры (и в РФ, и в Европе), когда студентов и аспирантов гнобили за то, что они не получали те данные, которые хотел руководитель, и заставляли переделывать одно и то же много много раз 👊 В таких случаях велик соблазн выдать желаемое за действительное. Если ты узнаёшь в этом себя, то это знак: беги из этого места как можно скорее. Ещё никто из моих знакомых, кто так поступил, не пожалел.

BY АДовый рисёрч




Share with your friend now:
group-telegram.com/ad_research/93

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

READ MORE Crude oil prices edged higher after tumbling on Thursday, when U.S. West Texas intermediate slid back below $110 per barrel after topping as much as $130 a barrel in recent sessions. Still, gas prices at the pump rose to fresh highs. Official government accounts have also spread fake fact checks. An official Twitter account for the Russia diplomatic mission in Geneva shared a fake debunking video claiming without evidence that "Western and Ukrainian media are creating thousands of fake news on Russia every day." The video, which has amassed almost 30,000 views, offered a "how-to" spot misinformation. "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted.
from ca


Telegram АДовый рисёрч
FROM American