Продолжаем серию постов про основные методы для ускорения диффузионных моделей. [Ссылка на часть 1].
Optimized Sampling Efficiency by new samplers: Есть подходы на основе численных методов, которые позволяют более эффективно решать дифференциальное уравнение, задающее траекторию обратной диффузии (это когда мы из шума движемся к картинке). ➖STSP: Sampling with splitting numerical methods ➖В эту категорию тоже можно отнести всякие замысловатые солверы, такие как DDIM, DPM, PNDM, PLMS, UniPC [пост]. ➖Итеративный метод Пикарда, который позволяет распараллелить семплинг, ценой больших вычислений [пост].
Low-level optimizations: ➖Профайлером анализируем узкие места в сети и переписываем отдельные операции на CUDA и вручную оптимизируем и фьюзим кернелы. Тут общие советы трудно давать, все зависит от вашей архитектуры. ➖FlashAttention-2 - ускоряет flash-attention блоки, которые являются одними из самых прожорливых по ресурсам в архитектуре Unet, широко используемой в диффузиях.
Продолжаем серию постов про основные методы для ускорения диффузионных моделей. [Ссылка на часть 1].
Optimized Sampling Efficiency by new samplers: Есть подходы на основе численных методов, которые позволяют более эффективно решать дифференциальное уравнение, задающее траекторию обратной диффузии (это когда мы из шума движемся к картинке). ➖STSP: Sampling with splitting numerical methods ➖В эту категорию тоже можно отнести всякие замысловатые солверы, такие как DDIM, DPM, PNDM, PLMS, UniPC [пост]. ➖Итеративный метод Пикарда, который позволяет распараллелить семплинг, ценой больших вычислений [пост].
Low-level optimizations: ➖Профайлером анализируем узкие места в сети и переписываем отдельные операции на CUDA и вручную оптимизируем и фьюзим кернелы. Тут общие советы трудно давать, все зависит от вашей архитектуры. ➖FlashAttention-2 - ускоряет flash-attention блоки, которые являются одними из самых прожорливых по ресурсам в архитектуре Unet, широко используемой в диффузиях.
Anastasia Vlasova/Getty Images The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel. In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client.
from ca