Notice: file_put_contents(): Write of 13292 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50
эйай ньюз | Telegram Webview: ai_newz/2662 -
Telegram Group & Telegram Channel
Deepseek V2: топ за свои деньги

Что-то в опенсорс в последнее время попадает прям поток MoE моделей, вот и DeepSeek V2 из них. 236B параметров, из которых 21B - активных. По качеству - между Mixtral 8x22B и LLaMa 3 70B, но при этом в 2-4 раза дешевле этих моделей у самых дешёвых провайдеров, всего лишь 14 центов за млн токенов инпута и 28 за млн токенов на выход. Лицензия модели MIT, так что до конца недели будет штук пять разных провайдеров дешевле этого.

Главная особенность - Multi-Head Latent Attention (MLA). От обычного Multi-Head Attention (MHA) он отличается механизмом сжатия KV Cache, где он хранится как низкоранговая матрица, откуда и куда проецируется когда его нужно использовать или обновить. Из экспериментов, по качеству это работает лучше MHA, при этом используя в 4 раза меньше памяти чем обычные Grouped Query Attention конфиги. Из нюансов - авторам пришлось изобрести новый вариант RoPE чтобы это всё заработало, так как обычный RoPE такого количества линейных проекций туда и назад переживать решительно отказывается. Если честно, я не совсем понимаю почему это работает и почему нету абляций для dense моделей, но интересно как это будет сочетаться с квантизацией KV кэша.

Размер контекста - 128k. Тренировали это всё на 8 триллионах токенов в течении 1.5 миллиона часов на H800 (китайская версия H100). Это уровень компьюта тренировки LLaMa 3 8B и примерно в 3 раза больше чем у Snowflake Arctic.

У модели 162 эксперта, из которых 2 перманентно активные, а из остальных 160-ти на каждый токен выбирается 6. Хочу отметить что эксперты там крайне маленькие – у каждого размерность всего 1536.

Соотношение цены и качества прекрасное, если все подтвердится на ChatBot Arena.

Из минусов — размер. В BF16 для локального инференса нужно 8x A100 с 80GB VRAM. Вся надежда на квантизацию.

Демка
Пейпер
Базовая модель
Чат версия

@ai_newz



group-telegram.com/ai_newz/2662
Create:
Last Update:

Deepseek V2: топ за свои деньги

Что-то в опенсорс в последнее время попадает прям поток MoE моделей, вот и DeepSeek V2 из них. 236B параметров, из которых 21B - активных. По качеству - между Mixtral 8x22B и LLaMa 3 70B, но при этом в 2-4 раза дешевле этих моделей у самых дешёвых провайдеров, всего лишь 14 центов за млн токенов инпута и 28 за млн токенов на выход. Лицензия модели MIT, так что до конца недели будет штук пять разных провайдеров дешевле этого.

Главная особенность - Multi-Head Latent Attention (MLA). От обычного Multi-Head Attention (MHA) он отличается механизмом сжатия KV Cache, где он хранится как низкоранговая матрица, откуда и куда проецируется когда его нужно использовать или обновить. Из экспериментов, по качеству это работает лучше MHA, при этом используя в 4 раза меньше памяти чем обычные Grouped Query Attention конфиги. Из нюансов - авторам пришлось изобрести новый вариант RoPE чтобы это всё заработало, так как обычный RoPE такого количества линейных проекций туда и назад переживать решительно отказывается. Если честно, я не совсем понимаю почему это работает и почему нету абляций для dense моделей, но интересно как это будет сочетаться с квантизацией KV кэша.

Размер контекста - 128k. Тренировали это всё на 8 триллионах токенов в течении 1.5 миллиона часов на H800 (китайская версия H100). Это уровень компьюта тренировки LLaMa 3 8B и примерно в 3 раза больше чем у Snowflake Arctic.

У модели 162 эксперта, из которых 2 перманентно активные, а из остальных 160-ти на каждый токен выбирается 6. Хочу отметить что эксперты там крайне маленькие – у каждого размерность всего 1536.

Соотношение цены и качества прекрасное, если все подтвердится на ChatBot Arena.

Из минусов — размер. В BF16 для локального инференса нужно 8x A100 с 80GB VRAM. Вся надежда на квантизацию.

Демка
Пейпер
Базовая модель
Чат версия

@ai_newz

BY эйай ньюз





Share with your friend now:
group-telegram.com/ai_newz/2662

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market.
from ca


Telegram эйай ньюз
FROM American