Telegram Group & Telegram Channel
Сейчас будет пост для новичков и повод вспомнить былое для старичков. 

Зачем ученым нужен AI? 


Тут мой бывший преподаватель по алгоритмам из Школы анализа данных в Минске, а ныне руководитель всего ШАДа Алексей Толстиков написал небольшое эссе на эту тему и собрал пару юзкейсов из академии. 

Кроме всяких чатов GPT, и Copilot'ов, помогающих писать код, машинное обучение уже давно используется в науке. Например, бозон Хиггса еще в 2012 году открыли с помощью ML (хоть и классического). Модели кормили килотоннами данных с датчиков, пока они искали какие-то необычные паттерны.

Самый известный на сегодняшний день пример, пожалуй, — AlphaFold, который предсказывает трехмерную структуру белков. Этот инструмент открыл множество новых комбинаций, за что и получил Нобелевскую премию. 

В таких задачах людям пришлось бы годами разбираться в бесконечных датасетах и графиках. Нейросети здесь незаменимы, особенно когда дело доходит до эмпирического вывода закономерностей — первого шага к построению полноценной теории или законов. 

Кстати, ШАД тоже занимается разработкой ИИ-моделей для научных задач.. Например, там собрали нейронку для предсказания распространения вулканического пепла в атмосфере. Это помогает заранее подготовиться к выпадению пепла и и минимизировать риски для людей и инфраструктуры. Такие риски есть, например, на Камчатке и в других регионах с активными вулканами. 

Технологии ИИ в науке начали применять еще давно. Например, с помощью модели Morpheus астрономы с 2020 года анализируют космическое небо в поисках экзопланет  Однако рядовой астроном или биолог вряд ли соберет AlphaFold, а обычный ML-щик без биолога тоже не справится. Поэтому ML-специалисты нужны везде! 

Вообще, междисциплинарный ресерч — это топ (я и сам начинал PhD с интердисциплинарного проекта с историей искусств). У нас уже есть Нобелевские премии по физике и химии, а еще осталась куча дисциплин, где использование AI еще не получило такого большого признания. Кто знает, может, следующая будет по истории? Например, за расшифровку каких-нибудь древних рун.

@ai_newz



group-telegram.com/ai_newz/3490
Create:
Last Update:

Сейчас будет пост для новичков и повод вспомнить былое для старичков. 

Зачем ученым нужен AI? 


Тут мой бывший преподаватель по алгоритмам из Школы анализа данных в Минске, а ныне руководитель всего ШАДа Алексей Толстиков написал небольшое эссе на эту тему и собрал пару юзкейсов из академии. 

Кроме всяких чатов GPT, и Copilot'ов, помогающих писать код, машинное обучение уже давно используется в науке. Например, бозон Хиггса еще в 2012 году открыли с помощью ML (хоть и классического). Модели кормили килотоннами данных с датчиков, пока они искали какие-то необычные паттерны.

Самый известный на сегодняшний день пример, пожалуй, — AlphaFold, который предсказывает трехмерную структуру белков. Этот инструмент открыл множество новых комбинаций, за что и получил Нобелевскую премию. 

В таких задачах людям пришлось бы годами разбираться в бесконечных датасетах и графиках. Нейросети здесь незаменимы, особенно когда дело доходит до эмпирического вывода закономерностей — первого шага к построению полноценной теории или законов. 

Кстати, ШАД тоже занимается разработкой ИИ-моделей для научных задач.. Например, там собрали нейронку для предсказания распространения вулканического пепла в атмосфере. Это помогает заранее подготовиться к выпадению пепла и и минимизировать риски для людей и инфраструктуры. Такие риски есть, например, на Камчатке и в других регионах с активными вулканами. 

Технологии ИИ в науке начали применять еще давно. Например, с помощью модели Morpheus астрономы с 2020 года анализируют космическое небо в поисках экзопланет  Однако рядовой астроном или биолог вряд ли соберет AlphaFold, а обычный ML-щик без биолога тоже не справится. Поэтому ML-специалисты нужны везде! 

Вообще, междисциплинарный ресерч — это топ (я и сам начинал PhD с интердисциплинарного проекта с историей искусств). У нас уже есть Нобелевские премии по физике и химии, а еще осталась куча дисциплин, где использование AI еще не получило такого большого признания. Кто знает, может, следующая будет по истории? Например, за расшифровку каких-нибудь древних рун.

@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/3490

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. Anastasia Vlasova/Getty Images This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors.
from ca


Telegram эйай ньюз
FROM American