Telegram Group & Telegram Channel
Forwarded from .ml
Как LLM могут помочь в классическом ML?

По статистике, специалисты по Data Science тратят до 70% рабочего времени на этап Feature Engineering, то есть отбирают наиболее важные признаки в данных и формируют новые, более информативные, датасеты. Кажется, с этой рутинной задачей отлично справится LLM. Но нет — в итоге 64% времени уйдёт на подготовку промптов.

Исследователи предлагают новые решения проблемы, одно из них — FELIX (Feature Engineering with LLMs for Interpretability and Explainability). Всё, что нужно для получения готовых фич — сам датасет и его короткий контекст. Дальше FELIX делает следующее:

✏️ Из случайных групп сэмплов датасета LLM генерирует численных и категориальных кандидатов в новые признаки.
✏️ С помощью кластеризации эмбеддингов похожие признаки отбрасываются.
✏️ Из полученных признаков отбрасываются те, что дают наименьшую объяснимость.

Метод эффективен для текстовых данных и сильно превосходит TF-IDF и трансформерные эмбеддинги от RoBERT. Если вам интересно, расскажем и о преобразовании других типов данных в новых постах!



group-telegram.com/boris_again/2962
Create:
Last Update:

Как LLM могут помочь в классическом ML?

По статистике, специалисты по Data Science тратят до 70% рабочего времени на этап Feature Engineering, то есть отбирают наиболее важные признаки в данных и формируют новые, более информативные, датасеты. Кажется, с этой рутинной задачей отлично справится LLM. Но нет — в итоге 64% времени уйдёт на подготовку промптов.

Исследователи предлагают новые решения проблемы, одно из них — FELIX (Feature Engineering with LLMs for Interpretability and Explainability). Всё, что нужно для получения готовых фич — сам датасет и его короткий контекст. Дальше FELIX делает следующее:

✏️ Из случайных групп сэмплов датасета LLM генерирует численных и категориальных кандидатов в новые признаки.
✏️ С помощью кластеризации эмбеддингов похожие признаки отбрасываются.
✏️ Из полученных признаков отбрасываются те, что дают наименьшую объяснимость.

Метод эффективен для текстовых данных и сильно превосходит TF-IDF и трансформерные эмбеддинги от RoBERT. Если вам интересно, расскажем и о преобразовании других типов данных в новых постах!

BY Борис опять


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/boris_again/2962

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. Sebi said data, emails and other documents are being retrieved from the seized devices and detailed investigation is in progress.
from ca


Telegram Борис опять
FROM American