Telegram Group & Telegram Channel
Google второй раз за неделю радует отличной статьей: они представляют Inference-Time Scaling для диффузии

В LLM в этом году test-time скейлинг (aka ризонинг) произвел настоящий фурор: оказалось, что так можно масштабировать модели даже когда они выходят на плато по train-time масштабированию (то есть по вычислениям и количеству данных, затраченным для обучения). Так почему бы не применить ту же идеи к генеративкам?

Вообще, диффузия сама по себе уже предполагает test-time скейлинг за счет количества шагов шумоподавления. С другой стороны, это сложно назвать скейлингом, потому что после некоторого шага диффузии уже ничего не масштабируется, и качество выходит на плато.

Поэтому Google решили провести исследование и выяснить, насколько возможен в диффузии test-time скейлинг другого рода: не за счет шагов шумоподавления, а за счет поиска лучшего шума (это, кстати, больше напоминает схему o1 с поиском лучшего решения). В частности, исследователи пытались увеличить test-time компьют для верификатора и для алгоритмов отбора лучших кандидатов для шума.

🟦 Верификаторы – это модули, которые оценивают качество сгенерированного. В этом случае используются CLIP для текстовой релевантности, Aesthetic Score для эстетики и ImageReward для комплексных предпочтений.
🟦 Алгоритмы поиска нужны для подборки такого шума, из которого при расшумлении получится лучший вариант кадра. Это может быть простой Random Search по множеству шумов, итеративный поиск вокруг начального шума Zero-Order Search или Search over Paths – поиск на промежуточных этапах траектории диффузии.

Итог: с помощю такого масштабирования удалось добиться улучшений на бенчмарках, то есть оно работает! На DrawBench общие баллы увеличились на 10–15%, особенно по креативности и текстовой релевантности. При этом итераций шумоподавления может понадобиться даже меньше, чем в исходном варианте.

Это очень круто. Кто бы мог подумать, что за такое короткое время test-time скейлинг доберется и сюда.

Текст статьи полностью тут
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/data_secrets/5933
Create:
Last Update:

Google второй раз за неделю радует отличной статьей: они представляют Inference-Time Scaling для диффузии

В LLM в этом году test-time скейлинг (aka ризонинг) произвел настоящий фурор: оказалось, что так можно масштабировать модели даже когда они выходят на плато по train-time масштабированию (то есть по вычислениям и количеству данных, затраченным для обучения). Так почему бы не применить ту же идеи к генеративкам?

Вообще, диффузия сама по себе уже предполагает test-time скейлинг за счет количества шагов шумоподавления. С другой стороны, это сложно назвать скейлингом, потому что после некоторого шага диффузии уже ничего не масштабируется, и качество выходит на плато.

Поэтому Google решили провести исследование и выяснить, насколько возможен в диффузии test-time скейлинг другого рода: не за счет шагов шумоподавления, а за счет поиска лучшего шума (это, кстати, больше напоминает схему o1 с поиском лучшего решения). В частности, исследователи пытались увеличить test-time компьют для верификатора и для алгоритмов отбора лучших кандидатов для шума.

🟦 Верификаторы – это модули, которые оценивают качество сгенерированного. В этом случае используются CLIP для текстовой релевантности, Aesthetic Score для эстетики и ImageReward для комплексных предпочтений.
🟦 Алгоритмы поиска нужны для подборки такого шума, из которого при расшумлении получится лучший вариант кадра. Это может быть простой Random Search по множеству шумов, итеративный поиск вокруг начального шума Zero-Order Search или Search over Paths – поиск на промежуточных этапах траектории диффузии.

Итог: с помощю такого масштабирования удалось добиться улучшений на бенчмарках, то есть оно работает! На DrawBench общие баллы увеличились на 10–15%, особенно по креативности и текстовой релевантности. При этом итераций шумоподавления может понадобиться даже меньше, чем в исходном варианте.

Это очень круто. Кто бы мог подумать, что за такое короткое время test-time скейлинг доберется и сюда.

Текст статьи полностью тут

BY Data Secrets








Share with your friend now:
group-telegram.com/data_secrets/5933

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion. Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future.
from ca


Telegram Data Secrets
FROM American