Notice: file_put_contents(): Write of 5452 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 13644 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Digital Ниндзя | Telegram Webview: digital_ninjaa/189 -
Telegram Group & Telegram Channel
Ещё раз хороним программирование. Земля пухом

С каждым выходом нового AI-агента или какой-нибудь софтины, которая сама пишет код, программирование хоронят. Фаундер очередного AI-агента пишет твитттер-тред с его возможностями. Подобные твиттер-треды, которые являются ни чем иным, как рекламой, берут на виллы разные предприниматели, менеджеры, AI-инфоцыгане, да и просто зеваки. «Это очередной прорыв, скоро программисты точно будут не нужны», — говорят они.

Этот пост — попытка ответить на вопрос, а что AI-агенты, AI Code Editor’ы и другие программы для написания кода могут прямо сейчас:

0. Обратите внимание. Демонстрация подобного софта в подавляющем большинстве случаев — написание чего-то с нуля. Так было и на последнем DevDay OpenAI, где AI писал софт для управления дроном, который запустили прямо в зал со зрителями. Но написания кода с нуля — немного искусственная задача. Работа программиста в 99.9% — ковырять существующий проект из нескольких десятков/сотен тысяч строк кода. Программист удаляет или рефакторит существующие куски, а также дописывает что-то новое.

А почему демонстрация происходит на новом проекте? Максимальный эффективный контекст большой языковой модели на данный момент — 64k токенов. Если мы, скажем, грубо, что в одной строке кода — 5 токенов, то 64k токенов — это проект на 12 000 строк. Это немного. В больших корпоратах даже шаблон нового репозитория может быть больше.

Производители агентов идут на ухищрения, сводя большие репозитории к нескольким тысячам строк кода, как это и делает кожаный программист. Это помогает, но без большого контекста в LLM, задача дописывания кода в большой репозиторий решается так себе.

1. Естественно, есть бенчмарк, который оценивает работу AI на больших репозиториях, SWE-bench. В SWE-bench входят 2300 реальных багов из 12 больших оупенсорсных репозиториев, написанных на Python. Как только этот бенчмарк появился год назад, лучшая модель закрывала 3% багов. Последний результат — 43% от AI-редактора кода Aide. 43% — мощно! Но есть «но».

В обучающей выборке моделей точно были все эти 12 больших оупенсорсных репозиториев. Модели знают о них очень много, даже специальную служебную информацию, например, хэши коммитов.

2. Есть видео Димы Рожкова, где он тестирует 6 AI-тулзов с небольшой задачей, где надо сходить в несколько API и сохранить данные. Дима в конце приходит к выводу, что непонятен конечный пользователь этих тулзов. Они до сих пор требуют много экспертизы и действий. Человек, не знакомый с написанием кода, просто не сможет воспользоваться этими инструментами. А программисту легче будет написать всё самому, так как агенты до сих пор требуют много времени. Вот твиттер-тред о написании обычного бэкенда с нуля инструментом Cursor Composer, изначальный промпт там аж в 250 строк — иногда легче написать код, чем такой запрос.

Вывод такой: пока это сырые инструменты. Но! Они уже могут помогать в чём-то. Нужно пробовать искать личные сценарии использования. Процент помощи вырастет, и тулы будут становиться всё полезнее. И AI точно заменит кожаного программиста, но когда — непонятно. До этого момента мы будем существовать в парадигме «менеджера» LLMок.

Так что, с одной стороны, те кто кричат, что программирование — всё, лукавят. Ну а с другой стороны, те, кто полностью отказываются от работы с AI, мол, я всё буду по старинке делать, похожи на неолуддитов.

Пост помог подготовить Игорь Котенков, автор лучшего, на мой взгляд, тг-канала про AI, Сиолошная. Моя искренняя рекомендация подписаться.



group-telegram.com/digital_ninjaa/189
Create:
Last Update:

Ещё раз хороним программирование. Земля пухом

С каждым выходом нового AI-агента или какой-нибудь софтины, которая сама пишет код, программирование хоронят. Фаундер очередного AI-агента пишет твитттер-тред с его возможностями. Подобные твиттер-треды, которые являются ни чем иным, как рекламой, берут на виллы разные предприниматели, менеджеры, AI-инфоцыгане, да и просто зеваки. «Это очередной прорыв, скоро программисты точно будут не нужны», — говорят они.

Этот пост — попытка ответить на вопрос, а что AI-агенты, AI Code Editor’ы и другие программы для написания кода могут прямо сейчас:

0. Обратите внимание. Демонстрация подобного софта в подавляющем большинстве случаев — написание чего-то с нуля. Так было и на последнем DevDay OpenAI, где AI писал софт для управления дроном, который запустили прямо в зал со зрителями. Но написания кода с нуля — немного искусственная задача. Работа программиста в 99.9% — ковырять существующий проект из нескольких десятков/сотен тысяч строк кода. Программист удаляет или рефакторит существующие куски, а также дописывает что-то новое.

А почему демонстрация происходит на новом проекте? Максимальный эффективный контекст большой языковой модели на данный момент — 64k токенов. Если мы, скажем, грубо, что в одной строке кода — 5 токенов, то 64k токенов — это проект на 12 000 строк. Это немного. В больших корпоратах даже шаблон нового репозитория может быть больше.

Производители агентов идут на ухищрения, сводя большие репозитории к нескольким тысячам строк кода, как это и делает кожаный программист. Это помогает, но без большого контекста в LLM, задача дописывания кода в большой репозиторий решается так себе.

1. Естественно, есть бенчмарк, который оценивает работу AI на больших репозиториях, SWE-bench. В SWE-bench входят 2300 реальных багов из 12 больших оупенсорсных репозиториев, написанных на Python. Как только этот бенчмарк появился год назад, лучшая модель закрывала 3% багов. Последний результат — 43% от AI-редактора кода Aide. 43% — мощно! Но есть «но».

В обучающей выборке моделей точно были все эти 12 больших оупенсорсных репозиториев. Модели знают о них очень много, даже специальную служебную информацию, например, хэши коммитов.

2. Есть видео Димы Рожкова, где он тестирует 6 AI-тулзов с небольшой задачей, где надо сходить в несколько API и сохранить данные. Дима в конце приходит к выводу, что непонятен конечный пользователь этих тулзов. Они до сих пор требуют много экспертизы и действий. Человек, не знакомый с написанием кода, просто не сможет воспользоваться этими инструментами. А программисту легче будет написать всё самому, так как агенты до сих пор требуют много времени. Вот твиттер-тред о написании обычного бэкенда с нуля инструментом Cursor Composer, изначальный промпт там аж в 250 строк — иногда легче написать код, чем такой запрос.

Вывод такой: пока это сырые инструменты. Но! Они уже могут помогать в чём-то. Нужно пробовать искать личные сценарии использования. Процент помощи вырастет, и тулы будут становиться всё полезнее. И AI точно заменит кожаного программиста, но когда — непонятно. До этого момента мы будем существовать в парадигме «менеджера» LLMок.

Так что, с одной стороны, те кто кричат, что программирование — всё, лукавят. Ну а с другой стороны, те, кто полностью отказываются от работы с AI, мол, я всё буду по старинке делать, похожи на неолуддитов.

Пост помог подготовить Игорь Котенков, автор лучшего, на мой взгляд, тг-канала про AI, Сиолошная. Моя искренняя рекомендация подписаться.

BY Digital Ниндзя


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/digital_ninjaa/189

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. You may recall that, back when Facebook started changing WhatsApp’s terms of service, a number of news outlets reported on, and even recommended, switching to Telegram. Pavel Durov even said that users should delete WhatsApp “unless you are cool with all of your photos and messages becoming public one day.” But Telegram can’t be described as a more-secure version of WhatsApp. He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea. Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores.
from ca


Telegram Digital Ниндзя
FROM American