Telegram Group & Telegram Channel
Позавчера в плисочате коллега предложил вычислять синусы с помощью широко известной в узких кругах формулы Марвина Минского, которую он (Минский), по собственному признанию, придумал случайно:

sin = sin + (cos >> shift)
cos = cos - (sin >> shift)

Придумал случайно, но способ получился весьма годный, т.к. простой и нересурсоёмкий, особенно в железе. Однако, за простоту приходится платить точностью, по этому я решил проверить, насколько целесообразно применять это в более серьезных применениях, нежели рисование кругов.

На картинках результат теста генератора Минского с разными параметрами: ширина переменной в битах, количество бит сдвига (эпсилон), значение коррекции постоянной составляющей и амплитуда шума дизеринга.

На графике сверху слева круг, построенный по значениям синуса и косинуса (несколько сотен периодов). Красным цветом обозначены значения из генератора, зеленым - референсные значения честных синуса и косинуса такой же разрядности. На графике сверху справа два периода синусоиды - референсная и полученная из генератора. Два графика ниже - спектры комплексных сигналов, полученных как (cos + isin). Зеленый - референсный, красный - из генератора.

В общем, вывод можно сделать следующий. Для рисования кругов метод годный, особенно если разрядность побольше - визуально разница между честным кругом и "нечестным" совсем не заметна. Применять в ЦОС - тут нужно хорошечно подумать. Наверное в чём-то не очень чувствительном к искажениям. Из графиков видно, что постоянную составляющую у меня получилось скомпенсировать, а вот фазовый сдвиг между синусом и косинусом нет (сдвиг проявляется в виде диагонально сплюснутого круга и в виде зеркальной палки на отрицательной части спектра). Даже небольшой имбаланс фаз, в одну выборку длиной, вызывает заметное отражение на спектре. Хотя, и здесь могут быть варианты, например использовать синус и косинус по отдельности.

PS: на уровни не смотрите, ибо окно, fft processing gain и пр.



group-telegram.com/enginegger/33
Create:
Last Update:

Позавчера в плисочате коллега предложил вычислять синусы с помощью широко известной в узких кругах формулы Марвина Минского, которую он (Минский), по собственному признанию, придумал случайно:

sin = sin + (cos >> shift)
cos = cos - (sin >> shift)

Придумал случайно, но способ получился весьма годный, т.к. простой и нересурсоёмкий, особенно в железе. Однако, за простоту приходится платить точностью, по этому я решил проверить, насколько целесообразно применять это в более серьезных применениях, нежели рисование кругов.

На картинках результат теста генератора Минского с разными параметрами: ширина переменной в битах, количество бит сдвига (эпсилон), значение коррекции постоянной составляющей и амплитуда шума дизеринга.

На графике сверху слева круг, построенный по значениям синуса и косинуса (несколько сотен периодов). Красным цветом обозначены значения из генератора, зеленым - референсные значения честных синуса и косинуса такой же разрядности. На графике сверху справа два периода синусоиды - референсная и полученная из генератора. Два графика ниже - спектры комплексных сигналов, полученных как (cos + isin). Зеленый - референсный, красный - из генератора.

В общем, вывод можно сделать следующий. Для рисования кругов метод годный, особенно если разрядность побольше - визуально разница между честным кругом и "нечестным" совсем не заметна. Применять в ЦОС - тут нужно хорошечно подумать. Наверное в чём-то не очень чувствительном к искажениям. Из графиков видно, что постоянную составляющую у меня получилось скомпенсировать, а вот фазовый сдвиг между синусом и косинусом нет (сдвиг проявляется в виде диагонально сплюснутого круга и в виде зеркальной палки на отрицательной части спектра). Даже небольшой имбаланс фаз, в одну выборку длиной, вызывает заметное отражение на спектре. Хотя, и здесь могут быть варианты, например использовать синус и косинус по отдельности.

PS: на уровни не смотрите, ибо окно, fft processing gain и пр.

BY Arnold Enginegger











Share with your friend now:
group-telegram.com/enginegger/33

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities. "This time we received the coordinates of enemy vehicles marked 'V' in Kyiv region," it added. "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych.
from ca


Telegram Arnold Enginegger
FROM American