Telegram Group & Telegram Channel
Reformer: The Efficient Transformer
Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya
Статья: https://arxiv.org/abs/2001.04451
Код: https://github.com/google/trax/tree/master/trax/models/reformer

Больше трансформеров, хороших и разных! Łukasz Kaiser, кстати, соавтор оригинальной работы, а также работы про Universal Transformer, да и многого другого по теме (https://scholar.google.ru/citations?hl=en&user=JWmiQR0AAAAJ&sortby=pubdate).

Реформер -- это по сути техническая оптимизация оригинального трансформера, чтобы он занимал меньше памяти и быстрее считался.

Проблема обычного трансформера, что он большой и тяжёлый, плюс сложность механизма внимания квадратичная. Из-за всего этого обучать трансформеры (особенно на длинных последовательностях) становится невозможно без кластера. И даже файнтюнить не всегда можно на одном GPU.

Например, в одной из больших конфигураций трансформера (не из оригинальной работы, а из более навороченной https://arxiv.org/abs/1811.02084, которая конечно не про типичный трансформер, а скорее про историю типа Мегатрона от Нвидии), число параметров в слое может достигать полумиллиарда. И слоёв таких много.

Плюс для обучения надо сохранять активации, плюс feed-forward слои в трансформере ещё большую размерность эмбеддингов имеют.

Соответственно в работе предлагаются три техники для облегчения этих проблем.

1. Reversible layers по типу как здесь https://arxiv.org/abs/1707.04585. Позволяют сократить на хранении активаций в N раз (N -- число слоёв).

2. Работа с активациями feed-forward слоёв блоками уменьшает потребление памяти ff-слоями.

3. Приближённое вычисление внимания через механизм Locality-sensitive hashing (LSH) сокращает сложность в этом месте с квадратичной O(L^2) до O(L*logL) (L -- размер последовательности).

Из всего этого самое интересное, кажется, LSH. Идея которого в том, что, во-первых, в расчёте внимания есть softmax, а в нём доминируют обычно несколько больших (наиболее близких к исходному) элементов. Так что достаточно считать его на этих самых наиболее близких. И, во-вторых, чтобы попроще найти эти наиболее близкие, надо использовать LSH, который сразу и положит их в один бакет. Так что включаем LSH и работаем только внутри бакета. На потенциальные промахи забиваем.

В чём-то идейно похоже на Sparse Transformer от OpenAI, только через LSH.

В экспериментах показывается, что всё это добро не ухудшает качество трансформера.

Query и Keys в трансформере можно считать одной матрицей, а не раздельными. Это ок, хуже не становится (иногда даже чуть лучше).

Обратимые слои тоже ок, тоже хуже не становится.

LSH делает чуть хуже, если хешей мало (скажем 2), но если сделать их побольше (8 или 16), то в целом тоже ок.

Ну и профит.

Если взглянуть шире, то за последнее время накопилось несколько интересных улучшений, которые выглядят ортогональными друг другу. Я бы занёс сюда:
* ALBERT (или как альтернатива ему Universal Transformer) от Гугла
* Compressive Transformer (как более продвинутый вариант Transformer-XL) от DeepMind
* Adaptive attention span от Фейсбука
* Ещё были оптимизации от Фейсбука про All-attention layer (https://ai.facebook.com/blog/making-transformer-networks-simpler-and-more-efficient/)
* Reformer вот теперь
* Наверное, если подумать, ещё что-то можно сюда добавить.

Коммьюнити ждёт своих героев, которые [имеют под рукой кластер или суперпомпьютер и] соберут все эти улучшения вместе и создатут новый супер-трансформер, а потом сделают на нём новый супер-BERT и супер-GPT2.

А если ещё это всё отдистиллировать…

Ам!



group-telegram.com/gonzo_ML/176
Create:
Last Update:

Reformer: The Efficient Transformer
Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya
Статья: https://arxiv.org/abs/2001.04451
Код: https://github.com/google/trax/tree/master/trax/models/reformer

Больше трансформеров, хороших и разных! Łukasz Kaiser, кстати, соавтор оригинальной работы, а также работы про Universal Transformer, да и многого другого по теме (https://scholar.google.ru/citations?hl=en&user=JWmiQR0AAAAJ&sortby=pubdate).

Реформер -- это по сути техническая оптимизация оригинального трансформера, чтобы он занимал меньше памяти и быстрее считался.

Проблема обычного трансформера, что он большой и тяжёлый, плюс сложность механизма внимания квадратичная. Из-за всего этого обучать трансформеры (особенно на длинных последовательностях) становится невозможно без кластера. И даже файнтюнить не всегда можно на одном GPU.

Например, в одной из больших конфигураций трансформера (не из оригинальной работы, а из более навороченной https://arxiv.org/abs/1811.02084, которая конечно не про типичный трансформер, а скорее про историю типа Мегатрона от Нвидии), число параметров в слое может достигать полумиллиарда. И слоёв таких много.

Плюс для обучения надо сохранять активации, плюс feed-forward слои в трансформере ещё большую размерность эмбеддингов имеют.

Соответственно в работе предлагаются три техники для облегчения этих проблем.

1. Reversible layers по типу как здесь https://arxiv.org/abs/1707.04585. Позволяют сократить на хранении активаций в N раз (N -- число слоёв).

2. Работа с активациями feed-forward слоёв блоками уменьшает потребление памяти ff-слоями.

3. Приближённое вычисление внимания через механизм Locality-sensitive hashing (LSH) сокращает сложность в этом месте с квадратичной O(L^2) до O(L*logL) (L -- размер последовательности).

Из всего этого самое интересное, кажется, LSH. Идея которого в том, что, во-первых, в расчёте внимания есть softmax, а в нём доминируют обычно несколько больших (наиболее близких к исходному) элементов. Так что достаточно считать его на этих самых наиболее близких. И, во-вторых, чтобы попроще найти эти наиболее близкие, надо использовать LSH, который сразу и положит их в один бакет. Так что включаем LSH и работаем только внутри бакета. На потенциальные промахи забиваем.

В чём-то идейно похоже на Sparse Transformer от OpenAI, только через LSH.

В экспериментах показывается, что всё это добро не ухудшает качество трансформера.

Query и Keys в трансформере можно считать одной матрицей, а не раздельными. Это ок, хуже не становится (иногда даже чуть лучше).

Обратимые слои тоже ок, тоже хуже не становится.

LSH делает чуть хуже, если хешей мало (скажем 2), но если сделать их побольше (8 или 16), то в целом тоже ок.

Ну и профит.

Если взглянуть шире, то за последнее время накопилось несколько интересных улучшений, которые выглядят ортогональными друг другу. Я бы занёс сюда:
* ALBERT (или как альтернатива ему Universal Transformer) от Гугла
* Compressive Transformer (как более продвинутый вариант Transformer-XL) от DeepMind
* Adaptive attention span от Фейсбука
* Ещё были оптимизации от Фейсбука про All-attention layer (https://ai.facebook.com/blog/making-transformer-networks-simpler-and-more-efficient/)
* Reformer вот теперь
* Наверное, если подумать, ещё что-то можно сюда добавить.

Коммьюнити ждёт своих героев, которые [имеют под рукой кластер или суперпомпьютер и] соберут все эти улучшения вместе и создатут новый супер-трансформер, а потом сделают на нём новый супер-BERT и супер-GPT2.

А если ещё это всё отдистиллировать…

Ам!

BY gonzo-обзоры ML статей




Share with your friend now:
group-telegram.com/gonzo_ML/176

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed. "The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into." For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content.
from ca


Telegram gonzo-обзоры ML статей
FROM American